首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.  相似文献   

2.
An unprecedented atom connectivity, MnIV(mu-O)MnIV(mu-O)2MnIV(mu-O)MnIV, is found in the complex [MnIV4O4(EtO-terpy)4(OH)2(OH2)2](ClO4)(6).8H2O (EtO-terpy=4'-ethoxyl-2,2':6',2' '-terpyridine), which has been characterized by X-ray crystallography, X-ray powder diffraction, EPR spectroscopy, and magnetic studies. This complex is the first example of a compound where a MnIV ion is coordinated by all three types of water-derived ligands: oxo, hydroxo, and aqua. Bond distances and angles for this complex are consistent with a MnIV4 oxidation state assignment. The di-mu-oxo- and mono-mu-oxo-bridged Mn-Mn distances are 2.80 and 3.51 A, respectively. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S=0 ground state and were fit using the spin Hamiltonian HHDvV=-J1S2S1-J2S1S1A-J1S1AS2A (S1=S1A=S2=S2A=3/2) with J1=-432 cm-1 and J2=-164 cm-1 (where J1 and J2 are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively). The first excited spin state of this tetramer is a spin triplet state at 279 cm-1 above the diamagnetic ground state. The next spin states are the S=1 and S=2 levels at about 700 and 820 cm-1 above the S=0 ground state, respectively. These large energy gaps are consistent with the absence of an EPR signal for this complex, even at high temperature.  相似文献   

3.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

4.
A mixed-valence Mn(III)-Mn(II)-Mn(III) trinuclear complex of stoichiometry MnIIIMnIIMnIII(Hsaladhp)2(Sal)4.2CH3CN (1), where H3saladhp is a tridentate Schiff-base ligand, has been structurally characterized with X-ray crystallography. The Mn(III)Mn(II)Mn(III) angles are strictly 180 degrees as required by crystallographic inversion symmetry. The complex is valence-trapped with two terminal Mn(III) ions in a distorted square pyramidal geometry. The Mn(III)...Mn(II) separation is 3.495 A. The trinuclear complex shows small antiferromagnetic exchange J coupling. The magnetic parameters obtained from the fitting procedure in the temperature range 10-300 K are J1 = -5.7 cm-1, g = 2.02, zJ = -0.19 cm-1, and R = 0.004. The EPR spectrum was obtained at 4 K in CHCl3 and in tetrahydrofuran glasses. The low-field EPR signal is a superposition of two signals, one centered around g = 3.6 and the other, for which hyperfine structure is observed, centered around g = 4.1 indicating an S = 3/2 state. In addition, there is a 19-line signal at g = 2.0. The multiline signal compares well with that observed for the S2 or S0* states of the oxygen-evolving complex. 1H NMR data reveal that the trinuclear compound keeps its integrity into the CHCl3 solution. Crystal data for complex 1: [C54H52N4O18Mn3], M = 1209.82, triclinic, space group P1, a = 10.367(6) A, b = 11.369(6) A, c = 13.967(8) A; alpha = 112.56(1) degree, beta = 93.42(2) degrees, gamma = 115.43(1) degree, Z = 1.  相似文献   

5.
The dicarboxylate group m-phenylenedipropionate (mpdp(2)(-)) has been used for the synthesis of four new Mn compounds of different nuclearities and oxidation states: [Mn(2)O(mpdp)(bpy)(2)(H(2)O)(MeCN)](ClO(4))(2) (3), [Mn(3)O(mpdp)(3)(py)(3)](ClO(4)) (4), [Mn(3)O(mpdp)(3)(py)(3)] (5), and [Mn(6)O(7)(mpdp)(3)(bpy)(3)](ClO(4)) (6). Compound 3 (2Mn(III)) contains a [Mn(2)(micro-O)](4+) core, whereas 5 (Mn(II), 2Mn(III)) and 4 (3Mn(III)) contain the [Mn(3)(micro(3)-O)](6+,7+) core, respectively. In all three compounds, the mpdp(2)(-) ligand is flexible enough to adopt the sites occupied by two monocarboxylates in structurally related compounds, without noticeable distortion of the cores. Variable-temperature magnetic susceptibility studies establish that 3 and 5 have ground-state spin values of S = 0 and S = 1/2, respectively. Compound 6 is a highly unusual 3Mn(III), 3Mn(IV) trapped-valent compound, and it is also a new structural type, with six Mn atoms disposed in a distorted trigonal antiprismatic topology. Its electronic structure has been explored by variable-temperature measurements of its dc magnetic susceptibility, magnetization vs field response, and EPR spectrum. The magnetic data indicate that it possesses an S = 3/2 ground state with an axial zero-field splitting parameter of D = -0.79 cm(-)(1), and this conclusion is supported by the EPR data. The combined results demonstrate the ligating flexibility of the mpdp(2)(-) ligand and its usefulness in the synthesis of a variety of Mn(x) species.  相似文献   

6.
Manganese-oxo complexes have long been investigated because of their proposed roles in biological and chemical catalysis. However, there are few examples of monomeric complexes with terminal oxo ligands, especially those with oxomanganese(IV) units. A oxomanganese(IV) complex has been prepared from [MnIIIH3buea(O)]2- ([H3buea]3-, tris[(N'-tert-butylureaylato)-N-ethylene]aminato), a monomeric MnIII-O complex in which the oxo ligand arises from cleavage of dioxygen. Treating [MnIIIH3buea(O)]2- with [Cp2Fe]BF4 in either DMF at -45 degrees C or DMSO at room temperature produces [MnIVH3buea(O)]-: lambdamax = 635 nm; nu(Mn-16O) = 737 cm-1; nu(Mn-18O) = 709 cm-1; g = 5.15, 2.44, 1.63, D = 3.0 cm-1, E/D = 0.26, aMn = 66 G (A = 190 MHz). These spectroscopic properties support the assignment of a mononuclear MnIV-oxo complex with an S = 3/2 ground state. Density functional theory supports this assignment and the Jahn-Teller distortion around the high-spin MnIV center that would alter the molecular structure of [MnIVH3buea(O)]- from trigonal symmetry (as indicated by the highly rhombic EPR signal). [MnIVH3buea(O)]- is relatively unstable in DMSO, converting to [MnIIIH3buea(OH)]- via a proposed X-H bond cleavage. [MnIVH3buea(O)]- reacts with 1,2-diphenylhydrazine to from azobenzene (95% yield) and [MnIIIH3buea(OH)]-. The MnIV-oxo does not react with triphenyl- or tricyclohexylphosphine. However, O-atom transfer is observed with methyldiphenylphosphine and dimethylphenylphosphine, producing the corresponding phosphine oxides. These results illustrate the diverse reactivity of the MnIV-oxo unit.  相似文献   

7.
For Mn(III)−Mn(IV) mixed-valence dimers, a dynamic pseudo-Jahn-Teller vibronic problem is solved. Temperature dependences of the magnetic moment of the clusters are calculated with inclusion of Heisenberg and double exchange as well as vibronic coupling. Conditions for antiferromagnetic, intermediate, and ferromagnetic ground spin-vibronic states and the accompanying low-temperature limits of magnetic moments are determined. State University, Moldova Republic. Valencia University, Spain. Institute of Chemistry, Academy of Sciences, Moldova Republic. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 4, pp. 28–34, July–August, 1994. Translated by L. Smolina  相似文献   

8.
Boc-protected tyrosine-attached corrole ligand on the “ortho” position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group.  相似文献   

9.
High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3d(z(2))-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.  相似文献   

10.
High-valency manganese (IV,V)-oxo porphyrins have been electrochemically generated and in situ spectrally characterized in multiporphyrin arrays, which were formed by an interfacial coordination reaction of Na2PdCl4 with manganese (III) tetrapyridylporphyrin (MnTPyP). Multilayers of the Pd-MnTPyP multiporphyrin arrays were obtained by the Langmuir-Blodgett (LB) method. The redox behaviors of manganese in the multiporphyrin arrays were pH-dependent. Spectroelectrochemical experiments revealed a reversible redox process between Pd-Mn(III)TPyP and its Mn(IV)-oxo species, but an irreversible process between Pd-Mn(III)TPyP and its Mn(V)-oxo species. The Pd-Mn(IV)TPyP multiporphyrin arrays could be spontaneously reduced to their Mn(III) complex, while the Pd-Mn(V)TPyP arrays were rather stable in basic solutions (pH > 10.5). However, when the Pd-Mn(V)TPyP multiporphyrin arrays were washed by or immersed in water, they were immediately reduced to their Mn(III) complex. Because these well-organized multiporphyrin arrays are of high thermal and chemical stability, they are potential molecular materials in the studies of natural and artificial catalytic processes as well as redox-based molecular switches.  相似文献   

11.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

12.
13.
A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of -4.4 in the oxidation of para-substituted thioanisoles.  相似文献   

14.
Binuclear manganese complexes Mn2(III/IV)(dtsalpn)2DCBI, 1, Mn2(III/III)(dtsalpn)2HDCBI, 2, containing the ligand dicarboxyimidazole (DCBI) have been prepared in order to address the issue of imidazole bridged and ferromagnetically coupled Mn sites in high oxidation states of the OEC in Photosystem II (PS II). Temperature dependent magnetic susceptibility studies of 1 indicates that the interaction between the two Mn(III)/Mn(IV) ions is ferromagnetic (J = +1.4 cm(-1)). Variable temperature EPR spectra of 1 shows that a g = 2 multiline is as an excited state signal corresponding to S = 1/2.  相似文献   

15.
A Mn(III)(4)Ni(II)(4) molecular square exhibiting slow magnetization relaxation has been prepared from the reaction of a Mn(II)(4)Mn(III)(6)Mn(IV)(2) cluster and a simple Ni(II) source.  相似文献   

16.
17.
Based on recent X-ray structures of the oxygen-evolving complex in photosystem II, quantum chemical geometry optimizations of several thousand structures have been performed in order to elucidate the mechanism for dioxygen formation. Many of the results of these calculations have been presented previously. The energetically most stable structure of the S(4) state has been used in the present study to investigate essentially all the possible ways the O--O bond can be formed in this structure. A key feature, emphasized previously, of the S(4) state is that an oxygen radical ligand is present rather than an Mn(V) state. Previous studies have indicated that this oxygen radical can form an O--O bond by an attack from a water molecule in the second coordination shell. The present systematic investigation has led to a new type of mechanism that is significantly favored over the previous one. A calculated transition-state barrier of 12.5 kcal mol(-1) was found for this mechanism, whereas the best previous results gave 18-20 kcal mol(-1). A requirement on the spin alignment for a low barrier is formulated.  相似文献   

18.
The intrinsic reactivity of a manganese(V)-oxo porphyrin complex, a typically fleeting intermediate in catalytic oxidation reactions in solution, has been elucidated in a study focused on its gas-phase ion-chemistry. The naked high-valent Mn(V)-oxo porphyrin intermediate 1 ([(tpfpp)Mn(V)O](+); tpfpp=meso-tetrakis(pentafluorophenyl)porphinato dianion), has been obtained by controlled treatment of [(tpfpp)Mn(III)]Cl (2-Cl) with iodosylbenzene in methanol, delivered in the gas phase by electrospray ionization and assayed by FT-ICR mass spectrometry. A direct kinetic study of the reaction with selected substrates, each containing a heteroatom X (X=S, N, P) including amines, sulfides, and phosphites, was thus performed. Ionic products arising from electron transfer (ET), hydride transfer (HT), oxygen-atom transfer (OAT), and formal addition (Add) may be observed, with a predominance of two-electron processes, whereas the product of hydrogen-atom transfer (HAT), [(tpfpp)Mn(IV)OH](+), is never detected. A thermochemical threshold for the formation of the product radical cation allows an evaluation of the electron-transfer ability of a Mn(V)-oxo complex, yielding a lower limit of 7.85 eV for the ionization energy of gaseous [(tpfpp)Mn(IV)O]. Linear free-energy analyses of the reactions of para-substituted N,N-dimethylanilines and thioanisoles indicate that a considerable amount of positive charge is developed on the heteroatom in the oxidation transition state. Substrates endowed with different heteroatoms, but similar ionization energy display a comparable reaction efficiency, consistent with a mechanism initiated by ET. For the first time, the kinetic acidity of putative hydroxo intermediates playing a role in catalytic oxidations, [(tpfpp)Fe(IV)OH](+) and [(tpfpp)Mn(IV)OH](+), has been investigated with selected reference bases, revealing a comparatively higher basicity for the ferryl, [(tpfpp)Fe(IV)O], with respect to the manganyl, [(tpfpp)Mn(IV)O], unit. Finally, the neat association reaction of 2 has been studied with various ligands showing that harder ligands are more strongly bound.  相似文献   

19.
The synthesis and characterization of a binuclear carboxylated bridged manganese complex containing the heptadentate ligand N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)-2-ol-1,3-propanediamine (H3bbppnol) is reported. This complex was characterized by elemental analysis; infrared, electronic (UV–vis) and EPR spectroscopy; and conductivity measurements. The complex was immobilized on silica by either adsorption or entrapment via a sol–gel route. The obtained solids were characterized by thermogravimetric analyses (TG and DSC), UV–vis and infrared spectroscopy, and X-ray diffraction. The catalytic performance of the binuclear manganese complex in epoxidation reactions was evaluated for both homogeneous and heterogeneous systems. The catalytic investigation revealed that the complex performs well as an epoxidation catalyst for the substrates cyclohexene (26–39%) and cyclooctene (29–74%). The solids containing the immobilized complex can be recovered from the reaction medium and reused, maintaining good catalytic activity.  相似文献   

20.
Synthetic access has been achieved into high oxidation state Mn/Ca chemistry with the 4?:?1 Mn?:?Ca stoichiometry of the oxygen-evolving complex (OEC) of plants and cyanobacteria; the anion of (Et(3)NH)(2)[Mn(III)(4)Ca(O(2)CPh)(4)(shi)(4)] has a square pyramidal metal topology and an S = 0 ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号