首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-Doppler measurements of laminar and turbulent flow in a pipe bend   总被引:3,自引:0,他引:3  
Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60 and 75° planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. The displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intenden for use as benchmark data for calibrating flow calculation methods.  相似文献   

2.
Experimental measurements in a boundary layer and a large-eddy simulation of plane channel flow have been used to study the dynamics of vorticity and mass transport in the nearwall region. It was found that Reynolds stress generation occurs in the vicinity of quasi-streamwise vortices, and that smoke particles tend to be ejected from the wall near these vortical structures.  相似文献   

3.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The empirical mode decomposition (EMD) is used to study the scale properties of turbulent transport and coherent structures based on velocity and temperature time series in stably stratified turbulence. The analysis is focused on the scale properties of intermittency and coherent structures in different modes and the contributions of energy-contained coherent structures to turbulent scalar counter-gradient transport (CGT). It is inferred that the velocity intermittency is scattered to more modes with the development of the stratified flow, and the intermittency is enhanced by the vertical stratification, especially in small scales. The anisotropy of the field is presented due to different time scales of coherent structures of streamwise and vertical velocities. There is global counter-gradient heat transport close to the turbulence-generated grid, and there is local counter-gradient heat transport at certain modes in different positions. Coherent structures play a principal role in the turbulent vertical transport of temperature.  相似文献   

5.
槽道湍流近壁结构的DPIV观测实验   总被引:1,自引:0,他引:1  
黄湛  申功炘 《力学学报》2006,38(2):236-245
采用DPIV系统(由两台CCD相机组成)对槽道湍流进行速度场时间历程的观测实验,通 过对大量测量结果的综合分析,取得了槽道湍流近壁结构的空间结构及其时间演化过程特征 的结果,可以揭示上扫下掠、湍流瞬时速度型等现象与大尺度涡演化的物理关系,解释若干 湍流大尺度结构的特征机理,还表明DPIV系统提供了一种定量观测湍流的时空结构特征的手 段.  相似文献   

6.
In this paper large eddy simulation of the fully developed turbulent flow in a curved channel is carried out. The computational results are presented and compared with the experimental results of Eskinazi and Yeh[1]. It is shown that the numerical results of the present LES are reliable and the influence of the curvature on the turbulence feature is correctly revealed.  相似文献   

7.
3-D evolution of Kármán vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circular cylinder is investigated numerically based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale γ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. currently published in the Chinese Edition of Acta Mechanica Sinica, Vol.25, No.3, 1993 The project supported by National Natural Science Foundation of China and the National Basic Research Project “Nonlinear Science”  相似文献   

8.
Three dimensional large eddy simulation (LES) is performed in the investigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties, and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature departs from the Gaussian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Turbulent mixing starts from small scale motions, and then extends to large scale motions.  相似文献   

9.
10.
An artificially synthesized velocity field with known properties is used as a test data set in analyzing and interpreting the turbulent flow velocity fields. The objective nature of this approach is utilized for studying the relation between streaky and eddy structures. An analysis shows that this relation may be less significant than is customarily supposed.  相似文献   

11.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
For three‐dimensional flows with one inhomogeneous spatial coordinate and two periodic directions, the Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue problem is formulated in the temporal coordinate. It is shown that this so‐called method of snapshots (MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of matrices as in the DM. In addition, the MOS avoids the need for so‐called weight functions, which emerge in the DM as a result of the non‐uniform grid typically employed in the inhomogeneous direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct simulation of turbulence in a channel in which viscoelasticity is imparted to the fluid using a Giesekus model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is increased. This is consistent with the results that have been obtained with other viscoelastic models, thus revealing an essential generic feature of polymer‐induced drag reduced turbulent flows. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

13.
A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.  相似文献   

14.
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

15.
We study the stripping of vortices with monotonic vorticity profiles within adverse shear. It is shown that distributed vortices behave differently from uniform patches regarding the critical onset of tearing. Stripping erodes the exterior layers of a distributed profile and generates very high vorticity gradients at the edge of the vortex. These effects are measured, and a theory which allows a detailed quantification of the mechanism is presented.  相似文献   

16.
The characteristics of transitional natural convection from laminar to turbulent flows in vertical open channel are numerically investigated. Results are especially presented for air under different conditions. Particular attention is paid to the effects of the channel length, channel width and heating conditions on the transitional natural convection heat transfer and flows.Die Eigenschaften von freier Konvektion im Übergangsbereich von laminarer und turbulenter Strömung in einem senkrechten offenen Kanal wird numerisch untersucht. Die Ergebnisse werden insbesondere für Luft unter verschiedenen Bedingungen vorgestellt. Besonders beachtet wurde der Einfluß der Kanallänge, der Kanalbreite und der Heizbedingungen auf den Wärmeübergang und die Strömung im Übergangsbereich bei freier Konvektion.  相似文献   

17.
The work deals with the numerical solution of incompressible turbulent flow in a channel with a backward-facing step having various inclination angles. Also, the inclination of upper wall is considered. The mathematical model is based on the Reynolds averaged Navier–Stokes equations. The governing equations are closed by the explicit algebraic Reynolds stress (EARSM) model according to Wallin and Johansson or by linear eddy viscosity models (SST, TNT kω). The numerical solution is carried out by the implicit finite-volume method based on the artificial compressibility and by the finite-element method amd both approaches compared. The numerical simulations use as reference the experimental data by Makiola and Driver and Seegmiller in large aspect ratio channels. In these cases, the results are obtained by 2D and 3D simulations. Further narrow channel PIV experimental data are used as reference for 3D simulations.  相似文献   

18.
19.
A segregated algorithm for the solution of laminar incompressible, two- and three-dimensional flow problems is presented. This algorithm employs the successive solution of the momentum and continuity equations by means of a decoupled implicit solution method. The inversion of the coefficient matrix which is common for all momentum equations is carried out through an approximate factorization in upper and lower triangular matrices. The divergence-free velocity constraint is satisfied by formulating and solving a pressure correction equation. For the latter a combined application of a preconditioning technique and a Krylov subspace method is employed and proved more effecient than the approximate factorization method. The method exhibits a monotonic convergence, it is not costly in CPU time per iteration and provides accurate solutions which are independent of the underrelaxation parameter used in the momentum equations. Results are presented in two- and three-dimensional flow problems.  相似文献   

20.
The paper's leitmotiv is condensed in one word: robustness. This is a real hindrance for the successful implementation of any multigrid scheme for solving the Navier–Stokes set of equations. In this paper, many hints are given to improve this issue. Instead of looking for the best possible speed‐up rate for a particular set of problems, at a given regime and in a given condition, the authors propose some ideas pursuing reasonable speed‐up rates in any situation. In a previous paper, the authors presented a multigrid method for solving the incompressible turbulent RANS equations, with particular care in the robustness and flexibility of the solution scheme. Here, these concepts are further developed and extended to compressible laminar and turbulent flows. This goal is achieved by introducing a non‐linear multigrid scheme for compressible laminar (NS equations) and turbulent flow (RANS equations), taking benefit of a convenient master–slave implementation strategy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号