首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Summary Using new processability testing techniques, the effects of curatives and antidegradants on flow properties of uncured rubber compounds have been studied. Results obtained show that a change of the cure system or the antidegradant type can affect the viscosity curve and the extrudate swell behaviour of NR and SBR compounds.CBS N-cyclohexyl-2-benzothiazole sulphenamide - DTDM 4,4-Dithiodimorpholine - TMTD Tetramethylthiuram disulphide - 6PPD N-Phenyl-N(1,3-dimethylbutyl)-p-phenylenediamine - TMQ 1,2-Dihydro-2,2,4-trimethylquinoline, polymerized - PBN Phenyl--naphthylamine - phr part per hundred rubber Paper presented at the VIIIth International Congress on Rheology, Naples, Sept. 1–5, 1980.With 7 figures and 2 tables  相似文献   

2.
In a previous paper (Guillet and Seriai, 1991) we derived a simple analytical expression which allows the prediction of extrudate swell of polystyrene in a wide range of residence time. This was done using the rubber-like elasticity theory and calculation of the elongational strain recovery of a Lodge fluid. The theoretical extrudate swell ratio mainly depends on the relaxation modulus, the extension ratio and the recoverable shear strain. The main advantage of this model is to provide good accuracy with short dies in a wide range of shear rate. In this paper, we examine the validity of the proposed equation with different contraction ratios at the die entrance (ECR) and its ability to predict extrudate swell of other commodity polymers such as polyethylenes.  相似文献   

3.
We solve the compressible Newtonian extrudate swell problem in order to investigate the effect of compressiblity on the shape of the extrudate. We employ a first-order equation of state relating the density to the pressure and use finite elements for the numerical solution of the problem. Our results show that the shape of the extrudate and the final extrudate swell ratio are not significanlty affected even at high compressibility values.  相似文献   

4.
Summary Die swell behaviour and morphology of melt blends of isotactic polypropylene (PP) and high density polyethylene for pure polymers and blends with 25, 50 and 75 weight % PP are described in the present study. A light interference contrast microscopy technique was used for the morphological characterization of melt blends and extrudate samples of the blends obtained with an Instron capillary rheometer. The results indicate that the domains from blends where the dispersed phase has higher viscosity than the continuous phase remain as continuous domains in the extrudate whereas domain destruction takes place when blends where the continuous phase has the higher viscosity are extruded.The die swell behaviour as well as the fiber forming properties of extrudates of melts having unstable domains extruded at high shear stresses resemble the behaviour of homopolymers, whereas samples with stable domains are significantly different, die swell increases with temperature at constant shear stress and stable fibers cannot be obtained after necking.With 10 figures and 1 table  相似文献   

5.
黏弹流体挤出胀大的数值模拟研究进展   总被引:7,自引:0,他引:7  
黄树新  鲁传敬 《力学进展》2004,34(3):379-392
主要介绍了黏弹流体挤出胀大的数值模拟研究进展.给出了黏弹流体挤出胀大的数学模型,回顾了近20多年以来挤出胀大的主要数值模拟研究工作,然后对主要模拟方法的计算过程、方法特点和形成的结果进行了一定的总结.最后提出了作者对挤出胀大研究的一些看法,包括目前研究中存在的问题和相关研究的发展趋势.   相似文献   

6.
7.
A theory of extrudate swell for short, intermediate or long dies is presented. In our experiment, we consider that the swelling phenomenon is mainly due to the recoverable elongational strain induced by the converging flow at the die entrance, as well as by recoverable shear strain originating within the die. From these concepts, an equation has been derived for the quantitative prediction of extrudate swell from the elastic material properties such as the entrance pressure drop, the relaxation modulus and the recoverable shear strain. Excellent agreement is found between predicted and measured values of extrudate swell obtained on commercial polystyrene melt, using capillaries of length-to-diameter ratios ranging from 1 to 20 and in a wide range of shear rates.  相似文献   

8.
Samples of cellulose acetate butyrate (CAB) hydroxypropyl cellulose (HPC) and ethyl cellulose (EC) are contrasted with commercial (atactic) polystyrene (PS) and isotactic polypropylene (PP) in studies of (i) differential scanning calorimetry, (ii) quiescent polarized light microscopy (iii) optical retardation variation following an imposed stress field. It is concluced that HPC and EC are thermotropic liquid crystals, while CAB behaves in a manner similar to a vitrifying isotropic melt such as PS. Studies of the shear viscosity and dynamic viscosity indicate HPC and EC exhibit yield values while CAB shows a zero shear viscosity and Vinogradov-Malkin reduced viscosity curve identical to PS. The normal stress and extrudate swell behavior of CAB are also similar to PS. The HPC and EC exhibit substantially reduced extrudate swell. Measurement of the principal normal stress difference behavior of the HPC melt is troubled by the existence of yield values.  相似文献   

9.
Compressible extrudate swell   总被引:1,自引:1,他引:0  
There are few computations of polymer forming processes which include compressibility. Here we estimate the effect of compressibility in Newtonian and PTT fluids on extrudate swell and stick-flip flow. Changes of the order of a few per cent occur in swelling, which is in accord with expectations.  相似文献   

10.
聚合物熔体三维挤出胀大的数值模拟   总被引:6,自引:0,他引:6  
李勇  江体乾 《力学学报》2002,34(6):856-862
采用有限元方法分析K-BKZ本构方程描述的聚合物熔体的三维挤出胀大.对于本构方程中偏应力张量的计算,首先给出质点的运动轨迹,分段求出局部的变形梯度张量,再求出整体的变形梯度、Cauchy-Green应变张量和 Finger应变张量,沿轨迹采用分段高斯积分计算应力.把应力作为方程的右端项,给出迭代方法,求解非线性方程组.并根据自由面处的边界条件,迭代得出出口处自由面的最终位置.对轴对称流道和矩形流道进行分析计算,并把结果与二维分析和实验结果进行了比较,显示方法是可行的.  相似文献   

11.
The extrudate swell phenomenon of a purely viscous fluid is analysed by solving simultaneously the Cauchy momentum equations along with the continuity equation by means of a finite difference method. The circular and planar jet flows of Newtonian and power-law fluids are simulated using a control volume finite difference method suggested by Patankar called SIMPLER (semi-implicit method for pressure-linked equations). This method uses the velocity components and pressure as the primitive variables and employs a staggered grid and control volume for each separate variable. The numerical results show good agreement with the analytical solution of the axisymmetric stick-slip problem and exhibit a Newtonian swelling ratio of 13.2% or 19.2% for a capillary or slit die respectively in accordance with previously reported experimental and numerical results. Shear thinning results in a decrease in swelling ratio, as does the introduction of gravity and surface tension.  相似文献   

12.
Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
The axisymmetric extrudate swell flow of a compressible Herschel–Bulkley fluid with wall slip is solved numerically. The Papanastasiou-regularized version of the constitutive equation is employed, together with a linear equation of state relating the density of the fluid to the pressure. Wall slip is assumed to obey Navier’s slip law. The combined effects of yield stress, inertia, slip, and compressibility on the extrudate shape and the extrudate swell ratio are analyzed for representative values of the power-law exponent. When the Reynolds number is zero or low, swelling is reduced with the yield stress and eventually the extrudate contracts so that the extrudate swell ratio reaches a minimum beyond which it starts increasing asymptotically to unity. Slip suppresses both swelling and contraction in this regime. For moderate Reynolds numbers, the extrudate may exhibit necking and the extrudate swell ratio initially increases with yield stress reaching a maximum; then, it decreases till a minimum corresponding to contraction, and finally, it converges asymptotically to unity. In this regime, slip tends to eliminate necking and may initially cause further swelling of the extrudate, which is suppressed if slip becomes stronger. Compressibility was found to slightly increase swelling, this effect being more pronounced for moderate yield stress values and wall slip.  相似文献   

14.
Accurate prediction of extrudate (die) swell in polymer melt extrusion is important as this helps in appropriate die design for profile extrusion applications. Extrudate swell prediction has shown significant difficulties due to two key reasons. The first is the appropriate representation of the constitutive behavior of the polymer melt. The second is regarding the simulation of the free surface, which requires special techniques in the traditionally used Eulerian framework. In this paper we propose a method for simulation of extrudate swell using an Arbitrary Lagrangian Eulerian (ALE) technique based finite element formulation. The ALE technique provides advantages of both Lagrangian and Eulerian frameworks by allowing the computational mesh to move in an arbitrary manner, independent of the material motion. In the present method, a fractional-step ALE technique is employed in which the Lagrangian phase of material motion and convection arising out of mesh motion are decoupled. In the first step, the relevant flow and constitutive equations are solved in Lagrangian framework. The simpler representation of polymer constitutive equations in a Lagrangian framework avoids the difficulties associated with convective terms thereby resulting in a robust numerical formulation besides allowing for natural evolution of the free surface with the flow. In the second step, mesh is moved in ALE mode and the associated convection of the variables due to relative motion of the mesh is performed using a Godunov type scheme. While the mesh is fixed in space in the die region, the nodal points of the mesh on the extrudate free surface are allowed to move normal to flow direction with special rules to facilitate the simulation of swell. A differential exponential Phan Thien Tanner (PTT) model is used to represent the constitutive behavior of the melt. Using this method we simulate extrudate swell in planar and axisymmetric extrusion with abrupt contraction ahead of the die exit. This geometry allows the extrudate to have significant memory for shorter die lengths and acts as a good test for swell predictions. We demonstrate that our predictions of extrudate swell match well with reported experimental and numerical simulations.  相似文献   

15.
An analysis of the flow of a second‐order fluid is presented. Reference values for some variables are defined, and with these a non‐dimensional formulation of the governing equations. From this formulation, three dimensionless numbers appear; one is the Reynolds number, and two numbers that are called the first‐ and second‐dimensionless normal stress (NSD) coefficients. The equations of motion are solved by a finite element method using a commercially available program (Fidap), and the steady state converged solution was used to measure the die swell. The factors that influence die swell and that are studied in this work include: the die geometry for circular cross sectional dies, including tubular, converging, diverging, half‐converging/half‐tubular shapes; fluid characteristics such as Reynolds number and first‐ and second‐DNS coefficients (both positive and negative values); and flow rates, as determined by the maximum velocity in a parabolic velocity profile at the entrance to the die. The results suggest that shear and deformation histories of the fluid directly influence not only swell characteristics, but also convergence characteristics of the numerical simulation. © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
We explore a mechanism of extrusion instability, based on the combination of nonlinear slip and compressibility. We consider the time-dependent compressible Newtonian extrudate swell problem with slip at the wall. Steady-state solutions are unstable in regimes where the shear stress is a decreasing function of the velocity at the wall. Compressibility provides the means for the alternate storage and release of elastic energy, and, consequently, gives rise to periodic solutions. The added novelty in the present work is the assumption of periodic volumetric flow rate at the inlet of the die. This leads to more involved periodic responses and to free surface oscillations similar to those observed experimentally with the stick-slip instability. To numerically simulate the flow, we use finite elements in space and a fully-implicit scheme in time.Dedicated to the memory of Prof. Tasos Papanastasiou  相似文献   

17.
Extrudate swell is a common phenomenon observed in the polymer extrusion industry. Accurate prediction of the dimensions of an extrudate is important for appropriate design of dies for profile extrusion applications. Prediction of extrudate swell has been challenging due to (i) difficulties associated with accurate representation of the constitutive behavior of polymer melts, and (ii) difficulties associated with the simulation of free surfaces, which requires special techniques in the traditionally used Eulerian framework. In a previous work we had argued that an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation may have advantages in simulating free surface deformations such as in extrudate swell. In the present work we reinforce this argument by comparing our ALE simulations with experimental data on the extrudate swell of commercial grades of linear polyethylene (LLDPE) and branched polyethylene (LDPE). Rheological behavior of the polymers was characterized in shear and uniaxial extensional deformations, and the data was modeled using either the Phan–Thien Tanner (PTT) model or the eXtended Pom–Pom (XPP) model. Additionally, flow birefringence and pressure drop measurements were done using a 10:1 contraction–expansion (CE) slit geometry in a MultiPass Rheometer. Simulated pressure drop and contours of the principal stress difference were compared with experimental data and were found to match well. This provided an independent test for the accuracy of the ALE code and the constitutive equations for simulating a processing-like flow. The polymers were extruded from long (L/D = 30) and short (L/D = 10) capillaries dies at 190 °C. ALE simulations were performed for the same extrusion conditions and the simulated extrudate swell showed good agreement with the experimental data.  相似文献   

18.
Finite element results are presented for the extrudate swell of Newtonian fluids from converging and diverging annular dies. Numerical calculations for a variety of diameter ratios and taper angles show the dependance of diameter and thickness swell on the angle. For diverging dies a thickness contraction occurs for angles greater than 30 degrees, while the diameter swell increases rapidly. For converging dies the design is limited to angles that do not allow contact of the inner free surfaces. The present results show that the diameter swell is highest for the diverging, followed by the straight and then the converging dies.  相似文献   

19.
A method to determine three-dimensional die shapes from extrudate swell and vice versa is presented using a three-dimensional Galerkin finite element method based on a streamlined formulation with the fluid velocities and pressures represented by triquadratic and trilinear basis functions respectively. The three-dimensional streamlined method, an extension of the two-dimensional formulation, uses successive streamsurfaces to form a boundary-conforming co-ordinate system. This produces a fixd, computational domain leaving the spatial location of the elements as unknowns to be determined with the standard primary variables (u, v, w, p). The extrudate produced by a die of a given shape is considered for moderate Reynolds numbers. Finally, the method is extended to address the problem of die design, where a die profile is sought to produce a target extrudate shape.  相似文献   

20.
The numerical computation of viscoelastic fluid flows with differential constitutive equations presents various difficulties. The first one lies in the numerical convergence of the complex numerical scheme solving the non-linear set of equations. Due to the hybrid type of these equations (elliptic and hyperbolic), geometrical singularities such as reentrant corner or die induce stress singularities and hence numerical problems. Another difficulty is the choice of an appropriate constitutive equation and the determination of rheological constants. In this paper, a quasi-Newton method is developed for a fluid obeying a multi-mode Phan-Thien and Tanner constitutive equation. A confined convergent geometry followed by the extrudate swell has been considered. Numerical results obtained for two-dimensional or axisymmetric flows are compared to experimental results (birefringence patterns or extrudate swell) for a linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号