首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanics of detachment of a rigid solid from an elastic wavy surface has been analyzed in a recent article, in which the axisymmetric case of a sphere and the plane strain case of a cylinder were considered. Due to the qualitative similarities, the discussion was limited to the axisymmetric case only. It was shown that the surface waviness makes the detachment process proceed in alternating stable and unstable segments and each unstable jump dissipates mechanical energy. As a result, the external work and the peak force required to separate a wavy interface are higher than the corresponding values for a flat interface, i.e., waviness causes interface toughening as well as strengthening. In this paper, a systematic experimental investigation is presented which examines the above theoretical analysis, by measuring adhesion between a “rigid” wavy punch and a soft “elastic” material, which is a block of gelatin here. The observed increase in adhesion due to waviness closely agrees with the theoretical predictions within the experimental and material uncertainties. The experiments not only validate the theory, but also demonstrate that adhesion of a soft material can be substantially enhanced by topographic optimization alone, without modifying the surface chemistry.  相似文献   

2.
The mechanics of detachment between a wavy elastic half space and a rigid solid is considered. Solutions for the axisymmetric problem of a rigid sphere and the plane strain problem of a rigid cylinder detaching from a wavy surface are developed. The interacting solids are taken to be in complete contact over a finite area initially. It is shown that the surface waviness makes the detachment process unstable, with the interface separating in alternating stable and unstable segments. Each unstable segment dissipates mechanical energy, leading to an increase in the total work of separation compared to that of a flat surface. Further, waviness causes the maximum separation force or the pull-off force to increase during detachment, resulting in an apparent toughening of the interface. This mechanism provides an alternative explanation to the experimental observations in the literature that roughness can sometimes lead to increase in pull-off force. It also illustrates the role of roughness in the attachment capability of several insect feet possessing soft pads. The basic solution presented here can be used to analyze the detachment of surfaces with multiple scale roughness as well. The solution also suggests strategies to improve reversible adhesion of a soft material by designing optimal surface topographies.  相似文献   

3.
An exact solution to the problem of indentation with friction of a rigid cylinder into an elastic half-space is presented. The corresponding boundary-value problem is formulated in planar bipolar coordinates, and reduced to a singular integral equation with respect to the unknown normal stress in the slip zones. An exact analytical solution of this equation is constructed using the Wiener-Hopf technique, which allowed for a detailed analysis of the contact stresses, strain, displacement, and relative slip zone sizes. Also, a simple analytical solution is furnished in the limiting case of full stick between the cylinder and half-space.  相似文献   

4.
With the emergence of micro- and nano-technology, the contact mechanics of MEMS and NEMS devices and components is becoming more important. Thus it is important to gain a better understanding of the role of coatings and thin films on micro- and nano-scale contact phenomena, and to understand the interactions of measurement devices, such as an atomic force microscope (AFM), with layered media.More specifically, in this work the frictionless contact, with adhesion, between a spherical indenter and an elastic-layered medium is investigated. This configuration can be viewed as either a single contact model or as a building block of a multi-asperity rough surface contact model. As the scale decreases to the nano level, adhesion becomes an important issue. The presence of adhesion affects the relationships among the applied force, the penetration of the indenter, and the size of the contact area. This axisymmetric problem includes the effect of adhesion using a Maugis type of adhesion model. This model spans the range of the Tabor parameter between the JKR and DMT regions. The key parameters in this analysis are the elastic moduli ratio of the layer and the substrate, the dimensionless layer thickness, and the Maugis adhesion parameter. The results can be applied to a rigid or to an elastic indenter.  相似文献   

5.
In the area of homogeneous, isotropic, linear elastic rough surface normal contact, many classic statistical models have been developed which are only valid in the early contact when real area of contact is infinitesimally small, e.g., the Greenwood–Williamson (GW) model. In this article, newly developed statistical models, built under the framework of the (i) GW, (ii) Nayak–Bush and (iii) Greenwood’s simplified elliptic models, extend the range of application of the classic statistical models to the case of nearly complete contact. Nearly complete contact is the stage when the ratio of the real area of contact to the nominal contact area approaches unity. At nearly complete contact, the non-contact area consists of a finite number of the non-contact regions (over a finite nominal contact area). Each non-contact region is treated as a mode-I “crack”. The area of each non-contact region and the corresponding trapped volume within each non-contact region are determined by the analytical solutions in the linear elastic fracture mechanics, respectively. For a certain average contact pressure, not only can the real area of contact be determined by the newly developed statistical models, but also the average interfacial gap. Rough surface is restricted to the geometrically-isotropic surface, i.e., the corresponding statistical parameters are independent of the direction of measurement. Relations between the average contact pressure, non-contact area and average interfacial gap for different combinations of statistical parameters are compared between newly developed statistical models. The relations between non-contact area and average contact pressure predicted by the current models are also compared with that by Persson’s theory of contact. The analogies between the classic statistical models and the newly developed models are also explored.  相似文献   

6.
The effect of adhesion on the contact behavior of elastic rough surfaces is examined within the framework of the multi-asperity contact model of Greenwood and Williamson (1966), known as the GW model. Adhesive surface interaction is modeled by nonlinear springs with a force–displacement relation governed by the Lennard–Jones (LJ) potential. Constitutive models are presented for contact systems characterized by low and high Tabor parameters, exhibiting continuous (stable) and discontinuous (unstable) surface approach, respectively. Constitutive contact relations are obtained by integrating the force–distance relation derived from the LJ potential with a finite element analysis of single-asperity adhesive contact. These constitutive relations are then incorporated into the GW model, and the interfacial force and contact area of rough surfaces are numerically determined. The development of attractive and repulsive forces at the contact interface and the occurrence of instantaneous surface contact (jump-in instability) yield a three-stage evolution of the contact area. It is shown that the adhesion parameter introduced by Fuller and Tabor (1975) governs the strength of adhesion of contact systems with a high Tabor parameter, whereas the strength of adhesion of contact systems with a low Tabor parameter is characterized by a new adhesion parameter, defined as the ratio of the surface roughness to the equilibrium interatomic distance. Applicable ranges of aforementioned adhesion parameters are interpreted in terms of the effective surface separation, obtained as the sum of the effective distance range of the adhesion force and the elastic deformation induced by adhesion. Adhesive strength of rough surfaces in the entire range of the Tabor parameter is discussed in terms of a generalized adhesion parameter, defined as the ratio of the surface roughness to the effective surface separation.  相似文献   

7.
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.  相似文献   

8.
Computational contact homogenization approach is applied to study friction anisotropy resulting from asperity interaction in elastic contacts. Contact of rough surfaces with anisotropic roughness is considered with asperity contact at the micro scale being governed by the isotropic Coulomb friction model. Application of a micro-to-macro scale transition scheme yields a macroscopic friction model with orientation- and pressure-dependent macroscopic friction coefficient. The macroscopic slip rule is found to exhibit a weak non-associativity in the tangential plane, although the slip rule at the microscale is associated in the tangential plane. Counterintuitive effects are observed for compressible materials, in particular, for auxetic materials.  相似文献   

9.
In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions.Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced.We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.  相似文献   

10.
Torsion of an elastic half-space by a rigid punch is investigated. The boundary of the half-space is assumed to be rough. Two geometries of the punch-parabolic and flat end are considered. It is shown that the contact area consists of stick and slip zones. This fact, which is well-known in the classical torsional contact of the elastic half-space with the smooth surface and the parabolic punch, also holds true for the flat-ended punch if the boundary roughness is involved. The partial slip problems are reduced to the integral equations, which are solved numerically. The presented results show the effects of boundary roughness on the shear stresses, size of the stick area and the relation between the twisting moment and the angle of twist.  相似文献   

11.
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E=E0(z/c0)k (0<k<1) while Poisson's ratio ν remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of Pcr=−(k+3)πRΔγ/2 where Δγ is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k=0, the Gibson solid when k→1 and ν=0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off.  相似文献   

12.
Axisymmetric contact at finite Coulomb friction and arbitrary profiles is examined analytically and numerically for dissimilar linear elastic solids. Invariance and generality are aimed at and an incremental procedure is developed resulting in a reduced benchmark problem corresponding to a rigid flat indentation of an elastic half-space. The reduced problem, being independent of loading and contact region, was solved by a finite element method based on a stationary contact contour and characterized by high accuracy. Subsequently, a tailored cumulative superposition procedure was developed to resolve the original problem to determine global and local field values. Save for the influence of the coefficients of friction and contraction ratio, it is shown that at partial slip the evolving relative stick-slip contour is independent of any convex and smooth contact profile at monotonic loading. For flat and conical profiles with rounded edges and apices, results are illustrated for relations between force, depth and contact contours together with surface stress distributions. The solution for dissimilar solids in a full space is transformed to a half-space problem and solved for a combination of material parameters in order to first determine interface traction distributions. Subsequently, full field values for the two solids were computed individually. In order to predict initiation of fracture and plastic flow, results are reported for the location and magnitude of maximum tensile stress and effective stress, respectively, for a range of geometrical and material parameters. In two illustrations, predicted results are compared with experimental findings related to initiation of brittle fracture and load-depth relations at nanoindentation.  相似文献   

13.
The author presents a very simple and slightly corrected version of the well-known Greenwood and Williamson (GW) model which closely follows the predictions of more complicated and computationally expensive theory such as the Bush, Gibson and Thomas (BGT) theory [Bush, A.W., Gibson, R.D., Thomas, T.R., 1975. Wear 35, 87]. This new model (which I call GW modified in the following) still treats the asperities of the rough surface as spherical cups, but, this time, the curvature of spheres is not constant and instead depends on the asperity height. The GW modified theory is, in particular, able to predict, in the limiting case of large separations, the same asymptotic linearity between contact area and load as in the BGT theory. This, in turn, proves that the BGT asymptotic linear area-load relation is not a consequence of having taken into account that the contact between the asperities is actually elliptic and, therefore, of having included the spread of asperity curvature at a given height (which incidentally makes the treatment very complicated), but a consequence of having included only the influence of asperity heights on the curvature distribution of the summits. I also give a simple explanation for why the GW modified model and the BGT theory follow exactly the same asymptotic behavior. Indeed, I show that the surface summits can be treated as perfectly spherical cups (all those at the same height having the same radius of curvature) as their height is increased to very large values. In fact, in the asymptotic limit of large separation, the mean curvature of summits is shown to increase proportionally to the summit height, whereas the difference of the two principal curvatures approaches a finite constant value. The consequence of this is that the Hertzian contact between the approaching elastic (initially flat) half-space and the summits exactly resemble that between an elastic half-space and a sphere.  相似文献   

14.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

15.
This paper aims at developing a stochastic-elastic model of a soft elastic body adhering on a wavy surface via a patch of molecular bonds. The elastic deformation of the system is modeled by using continuum contact mechanics, while the stochastic behavior of adhesive bonds is modeled by using Bell's type of exponential bond association/dissociation rates. It is found that for sufficiently small adhesion patch size or stress concentration index, the adhesion strength is insensitive to the wavelength but decreases with the amplitude of surface undulation, and that for large adhesion patch size or stress concentration index, there exist optimal values of the surface wavelength and amplitude for maximum adhesion strength.  相似文献   

16.
A cohesive zone model for two-dimensional adhesive contact between elastic cylinders is developed by extending the double-Hertz model of Greenwood and Johnson (1998). In this model, the adhesive force within the cohesive zone is described by the difference between two Hertzian pressure distributions of different contact widths. Closed-form analytical solutions are obtained for the interfacial traction, deformation field and the equilibrium relation among applied load, contact half-width and the size of cohesive zone. Based on these results, a complete transition between the JKR and the Hertz type contact models is captured by defining a dimensionless transition parameter μ, which governs the range of applicability of different models. The proposed model and the corresponding analytical results can serve as an alternative cohesive zone solution to the two-dimensional adhesive cylindrical contact.  相似文献   

17.
In this paper, adhesive contact of a rigid cylinder on an elastic power-law graded half-space is studied analytically with the theory of weakly singular integral equation and orthogonal polynomial method. Emphasis is placed on the coupling effect between tangential and normal directions which was often neglected in previous works. Our analysis shows that the coupling effect tends to reduce the contact area in the compressive regime. The effect of bending moment on the adhesion behavior is also examined. Like a pull-off force, there also exists a critical bending moment at which the cylinder can be bended apart from the substrate. However, unlike pull-off force, the critical bending moment is insensitive to the gradient exponent of the graded material.  相似文献   

18.
Self-similar problems of contact for non-convex punches are considered. The non-convexity of the punch shapes introduces differences from the traditional self-similar contact problems when punch profiles are convex and their shapes are described by homogeneous functions. First, three-dimensional Hertz type contact problems are considered for non-convex punches whose shapes are described by parametric-homogeneous functions. Examples of such functions are numerous including both fractal Weierstrass type functions and smooth log-periodic sine functions. It is shown that the region of contact in the problems is discrete and the solutions obey a non-classical self-similar law. Then the solution to a particular case of the contact problem for an isotropic linear elastic half-space when the surface roughness is described by a log-periodic function, is studied numerically, i.e. the contact problem for rough punches is studied as a Hertz type contact problem without employing additional assumptions of the multi-asperity approach. To obtain the solution, the method of non-linear boundary integral equations is developed. The problem is solved only on the fundamental domain for the parameter of self-similarity because solutions for other values of the parameter can be obtained by renormalization of this solution. It is shown that the problem has some features of chaotic systems, namely the global character of the solution is independent of fine distinctions between parametric-homogeneous functions describing roughness, while the stress field of the problem is sensitive to small perturbations of the punch shape.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号