首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A finite element couple stress formulation is used to predict microbuckle initiation from a patch of fibre waviness in a unidirectional fibre composite under remote compression and bending. Attention is focused on the knock-down in strength due to large amplitude waviness, with the effects of the physical size of the imperfection included by incorporating the fibre bending resistance within the formulation. The predicted strengths deviate significantly from the simpler kinking theory which neglects the role of fibre bending. Initial imperfections in the form of an infinite band and a circular wavy patch are considered: when these imperfections are of large spatial extent and possess a large misalignment angle, the compressive strength approximates the steady state band broadening stress for an infinite band. The effect of an imposed spatial gradient of stress within the composite is explored by determining the compressive strength of beams of finite height B for the loading cases of pure bending and axial compression. It is found that the compressive strength is sensitive to the magnitude of the imposed stress gradient: the compressive strength of the outer fibres of the beam in bending increases with diminishing height of the beam. This size dependence is much reduced for the case of uniform compression.  相似文献   

2.
Increasingly fine spatial resolution in numerical models of brittle materials promises to improve prediction and characterization of dynamic failure in these materials. However, as the resolution of these numerical models begins to approach the material micro-scale, the associated discretization requires a definitive connection to the microstructure. In many cases a numerical model (e.g., a finite element mesh) that explicitly resolves each flaw within the material is not feasible for macro-scale analyses. As an alternative, each element can be treated as a meso-scale continuum with constitutive properties that reflect the characteristics of the underlying microstructure. Small scale elements will exhibit random variations in the constitutive properties as a result of the random variations in the number and types of flaws and the flaw sizes contained within each element. The present paper proposes a technique for assigning probability distributions to these element properties, which can be thought of as the meso-scale constitutive properties. In particular, the strain-rate dependent compressive uniaxial strength of a ceramic is modeled using a two-dimensional analytical model developed by Paliwal and Ramesh (2008). The effect on the probability distribution of meso-scale (or element-level) strength from flaw density, flaw size distribution, flaw clustering, and strain rate are studied. Higher strain rates, more flaw clustering, and decreasing element size all contribute to greater scatter in uniaxial compressive strength. Variations in flaw size increase the scatter in the strength more for low strain rate loadings and less clustered microstructures. The results provide interesting comparisons to the classical assumption of a two-parameter Weibull-distributed strength, showing that a three-parameter Weibull distribution and even a lognormal distribution fit better with the simulated strength data.  相似文献   

3.
A computationally economic finite-element-based multi-linear elastic orthotropic materials approach has been developed to predict the stress–strain and fracture behaviour of ceramic matrix composites with strain-induced damage. The finite element analysis utilises a solid element to represent a homogenised orthotropic medium of a heterogeneous uni-directional tow. The non-linear multi-axial stress–strain behaviour has been discretised to multi-linear elastic curves, which have been implemented by a user defined subroutine or UMAT in the commercial finite element package, ABAQUS. The model has been used to study the performance of two CMC composites: a SiC (Nicalon) fibre/calcium aluminosilicate (CAS) matrix 0°/90° cross-ply laminate Nicalon/CAS; and, a carbon fibre/carbon matrix–SiC matrix (C/C–SiC) plain weave laminate DLR-XT. The global stress–strain curves with catastrophic fracture behaviour and effects of fibre waviness have been predicted. Comparisons have been made between the predictions and experimental data for both materials. The predicted results when fibre waviness is taken into account compare well with the experimental data.  相似文献   

4.
魏玉卿  张俊乾 《力学季刊》2005,26(4):634-638
旨在研究由缝纫引起的材料弹性性质的变化并对缝纫复合材料层合板面内拉伸强度进行理论预测。认为缝纫引起的面内纤维偏转是缝纫影响复合材料面内力学性能的主要原因,引入最大纤维偏转角和变形区宽度两个结构参数,提出了描述材料非均匀性的纤维弯曲模型。采用多层次多尺度模拟的方法得到层合板非均匀的材料性质。通过二维有限元分析对单向拉伸载荷作用下的面内强度进行理论预测,得到与试验数据相吻合的结果,进而分析了缝纫密度对拉伸强度的影响。  相似文献   

5.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.  相似文献   

6.
A computationally economic finite-element-based approach has been developed to predict the stress–strain and fracture behaviour of an 8-Harness satin woven ceramic matrix composite with strain-induced damage. The finite element analysis utilises a solid element to model the behaviour of the homogenised orthotropic uni-directional tow and its matrix. The underpinning models of the tow and matrix, (Tang et al., 2009) capture the physics of the interactions between fibres and matrix; and, in this way, permit modelling that bridges the length scales of the fibres and full-scale components. The non-linear multi-axial stress–strain behaviour of the composite has been discretised by multi-linear elastic curves; and the latter has been used as input to a user defined subroutine, UMAT, in the commercial finite element package, ABAQUS. A partial unit cell model has been constructed of the 8-Harness satin weave composite of carbon fibres embedded in an amorphous carbon matrix, HITCO C/C. Predictions of the global stress–strain curve, which include the effects of fibre waviness, have been made for two failure modes: the first by deformation localisation, and the second by dynamic tow failure on fibre fracture, triggered by instantaneous pull-out deactivation. Comparisons have been made between the predictions and experimental data that exhibit two classes of fracture behaviour: brittle and quasi-ductile. The predicted results, both with and without tow waviness, compare well with the experimental data; however, the predictions for waviness are slightly better. The two extremes of experimental behaviour have been found to correspond with the two tow fracture criteria modelled.  相似文献   

7.
An ultrasonic non-destructive testing method is under development for detecting small scale damage in carbon fibre reinforced polymer. This method relies on signal processing to detect the presence of nonclassical nonlinear signature of microcracking or delamination in the material. Using reciprocal time reversal with nonlinear spectroscopy, the ultrasound can be focused on defect which is in unknown location in test object and may be far from the sending or the receiving transducer. With spectral analysis of defect and delayed time reversal input, the defect can be excited to larger displacement amplitudes by using its resonance. The study is conducted using finite element simulations in two dimensions for carbon fibre composite plate.  相似文献   

8.
为降低有砟铁路轨道维护成本并提高乘客舒适度,对铁路道砟材料破碎机理深入研究具有重要作用。本文设计并开展了测量铁路道砟材料特征强度的试验,对道砟受压破碎过程的力和位移等数据加以分析;同时,通过三维激光扫描系统获取道砟三角网格多面体边界,依此采用颗粒平行粘结方式构造具有不规则真实外观的铁路道砟,并采用离散单元方法(DEM)数值模拟道砟径向加载破碎过程,分析应力应变曲线和粘结断裂数等数据以分析颗粒破碎机制。通过对多个道砟颗粒加载试验及数值模拟计算发现,随着道砟尺寸的增加,其有效压缩强度逐渐减小。道砟颗粒的有效压缩强度符合威布尔概率分布函数,并确定了其残存概率的平均强度和威布尔参量,试验和数值模拟结果相吻合。  相似文献   

9.
The finite length of a Taylor–Couette cell introduces endwall effects that interact with the centrifugal instability. We investigate the interaction between the endwall Ekman boundary layers and the vortical structures in a finite-length cavity with counter-rotating cylinders via direct numerical simulation using a three-dimensional spectral method. To analyze the nature of the interaction between the vortices and the endwall layers we consider four endwall boundary conditions: fixed endwalls, endwalls rotating with the outer cylinder, endwalls rotating with the inner cylinder, and stress-free endwalls. The vortical structure of the flow depends on the endwall conditions. The waviness of the vortices is suppressed only very near the endwall, primarily due to zero axial velocity at the endwall rather than viscous effects. In spite of their waviness and random behavior, the vortices generally stay inside of the v=0 isosurface by adjusting quickly to the radial transport of azimuthal momentum. The thickness and strength of the Ekman layer at the endwall match with that predicted from a simple theoretical approach.  相似文献   

10.
This work addresses the development of physically based constitutive equations for the consolidation of fibre-matrix-void systems typically arising in the manufacture of matrix-coated fibre metal matrix composite materials. The analyses consider square array packing of the coated fibres under symmetrical in-plane compressive load and take into account the power-law creep of the matrix. Two models have been developed. The first is based on an energy approach in which assumed velocity fields in the deforming matrix are considered and are expressed in terms of an unknown parameter. In this way, the dependence of the deformation rate on volume fraction of voids and fibres is derived through the use of Hill's minimum principle for velocities. The second model makes use of micro-mechanical finite element modelling in which fibre, matrix and void are modelled explicitly. The micro-mechanical finite element model is developed for validation and comparison. Theoretical predictions are examined. The constitutive equation for consolidation derived from Hill's minimum principle shows good agreement with results obtained from micro-mechanical finite element modelling.  相似文献   

11.
The simulation of fibre orientation in dilute suspension with front moving is carried out using the projection and level-set methods. The motion of fibres is described using the Jeffery equation, and the contribution of fibres to the flow is accounted for by the configuration-field method. The dilute suspension of short fibres in Newtonian fluids is considered. The governing Navier–Stokes equation for the fluid flow is solved using the projection method with finite difference scheme, while the fibre-related equations are directly solved with the Runge–Kutta method. In the present study for fibres in dilute suspension flow for injection molding, the effects of various flow and material parameters on the fibre orientation, the velocity distributions and the shapes of the leading flow front are found and discussed. Our findings indicate that the presence of fibre motion has little influence on the front shape in the ranges of fibre parameters studied at the fixed Reynolds number. Influence of changing fibre parameters only causes variation of front shape in the region near the wall, and the front shape in the central core area does not vary much with the fibre parameters. On the other hand, the fibre motion has strong influence on the distributions of the streamwise and transverse velocities in the fountain flow. Fibre motion produces strong normal stress near the wall which leads to the reduction of transversal velocity as compared to the Newtonian flow without fibres, which in turn, leads to the increased streamwise velocity near the wall. Thus, the fibre addition to the flow weakens the strength of the fountain flow. The Reynolds number has also displayed significant influence on the distribution of the streamwise velocity behind the flow front for a given fibre concentration. It is also found that the fibre orientation is not always along the direction of the velocity vector in the process of mold filling. In the region of the fountain flow, the fibre near the centreline is more oriented across the streamwise direction compared to that in the region far behind the flow front. This leads to the fact that the fibre near the centreline in the region of fountain flow is more extended along the transverse direction. As the fibre orientation in the suspension flow and the shape of the flow front have great bearing on the quality of the product made from injection molding, this study has much implications for engineering applications. These results can also be useful in other fields dealing with fibre suspensions.  相似文献   

12.
Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the <100> direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N3 cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216, 512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5–10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress–strain response of the aluminum base material.  相似文献   

13.
A method for reliability assessment of the post-buckling compressive strength of laminated composite plates and stiffened panels under axial compression is presented in the paper. The prediction of the post-buckling compressive strength is performed by a progressive failure analysis which was developed based on a progressive stiffness degradation model and a nonlinear finite element analysis with a new explicit through-thickness integration scheme. A method coupled with the finite element analysis is proposed for reliability assessment where a finite difference method combined with an improved first-order reliability algorithm that omits the non-important random variables but retains sufficient accuracy was developed for reliability estimation. Two numerical examples are described demonstrating the capabilities of the method developed.  相似文献   

14.
本文围绕新型对称双阴极固体氧化物燃料电池电堆单元在不同集流位置下热应力分布情况和优化集流方式,建立了一个基于电-化-热-力多场耦合理论的三维SOFC电堆单元数值模型.引入固体力学热-力学理论,结合Weibull失效概率分析方法,讨论了不同集流方式对SOFC内部应力分布及失效的影响.研究结果表明,双侧阴极同时开展电子集流方式下的电解质平均电流密度比单侧单一集流方式下高,改变阳极集流位置会改变电极高温区的分布;SOFC电堆单元上电极结构处的最大主应力明显大于其他组件上的最大主应力;阳极集流位置设置在阳极气体入口处时电极结构上的最大主应力和失效概率大于集流位置设置在阳极气体出口处的最大主应力和失效概率.  相似文献   

15.
A method of finite element modelling the fracture mechanics of a fibre reinforced cement composite is presented. It embodies the use of beam elements with negative extensional stiffness. The method compares favourably with experimental work. Whilst fibre reinforced cement composites are used in this work, the techniques used are applicable to any type of fibre composite material.  相似文献   

16.
复合材料层合板的低速冲击损伤及其剩余压缩强度研究   总被引:3,自引:0,他引:3  
本文采用理论和实验方法研究了复合材料层合板的低速冲地及其剩余压缩强度。文中利用有限元方法和能量转换原理计算了层合板受到低速冲击的受载最危险状态,以及此时的应力分布;并用Tsai-Wu张量准则判断损伤情况,对产生损伤的单元进行相应的刚度折减,且作重复计算直至不产生新的损伤为止;最后,对受冲击的层合板还进行剩余压缩强度计算。在实验中,采用激光全息无损检测法测量了层合板的冲击损伤,并对受冲击的层合板进行  相似文献   

17.
A thermoelastoplastic analysis is made to study the surface waviness of orthogonal machine cutting. As a workpiece experiences heavy cutting, chips are formed incrementally in a steady fashion leaving a sinusoidal wavy surface as evidence of the varying thickness of the uncut chips. The finite difference method is applied to determine the temperature distribution in the chip and tool while a large deformation thermoelastoplastic finite element analysis is made to simulate the wave removing process whereby the wavy surface is modelled by saw-tooth shaped meshes. Determined are the chip geometry, residual stresses in the machined surface, temperature distributions in the chip and tool forces. The cutting forces are also calculated and they agree well with the test results.  相似文献   

18.
Considered in the analysis are complex systems with parallel redundancy. The failure probability of such a system is assessed by the strength probabilistic properties of the structural elements. There is a finite number of parallel structural elements that provides the maximum possible reliability of the system. Parallel systems may fail by instantaneous growth of failed elements. The tendency to catastrophic failure depends on the element strength probability and overload. Calculated is the critical stress corresponding to the beginning of catastrophic failure of the parallel system. Weibull probability distribution is used for describing the structural element strength. The critical stress ranges from 50% to 95% of the mean single element strength; depends on the overload and probability distribution.  相似文献   

19.
提出了面内局部纤维弯曲模型,基于有限元法和周期性边界条件建立了缝合层板面内剪切强度分析方法,采用桥联模型和最大应力判据分析损伤扩展并获得面内剪切强度,预报结果与试验吻合较好,探讨了缝合参数对层合板面内剪切强度的影响规律,结果表明缝合削弱了层合板的面内剪切强度,缝合针距和行距越大对面内剪切强度越有利,较细的缝合线对面内剪切强度有利.  相似文献   

20.
随机过程的随机谐和函数表达   总被引:7,自引:0,他引:7  
陈建兵  李杰 《力学学报》2011,43(3):505-513
研究了随机过程的随机谐和函数表达及其性质. 首先证明了当随机谐和函数的频率分布与目标功率谱密度函数形状一致时, 随机谐和函数过程的功率谱密度函数等于目标功率谱密度函数. 进而, 证明了随机谐和函数过程的渐进正态性, 讨论了趋向正态分布的速率, 并采用Pearson分布研究了一维概率密度函数的性质. 与已有的随机过程谱表达方式相比, 采用随机谐和函数表达, 仅需要很少的展开项数, 即可获得精确的目标功率谱密度函数, 从而大大降低了与之相关的随机动力系统分析的难度. 最后, 以多自由度体系的线性和非线性响应分析为例, 验证了随机谐和函数模型的有效性和优越性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号