首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents simulations of cold isostatic and closed die compaction of powders based on the Discrete Element Method. Due to the particulate nature of powders, densification of the compact proceeds both through the plastic deformation at the particle contact and the mutual rearrangement of particles. The relative weight of each mechanism on the macroscopic deformation process depends on the contact law, the relative density, and the type of stress exerted on the particles (shear or pressure). 3D computer simulations have been carried out to investigate the role of these parameters on the deformation mechanisms of powder compacts. The effect of rearrangement is studied by comparing simulations that use a homogeneous strain field solution for which local rearrangement is omitted and simulations that include local rearrangement. It is shown that local rearrangement has some effect on average quantities such as the average coordination number, the average contact area and the macroscopic stress. The effect on averaged quantities is much stronger for closed die compaction than for isostatic compaction. However the main effect of local rearrangement is to widen the distribution of the parameters that define the contact (contact area in particular). The results of these simulations are compared to available experimental data and to statistical models that use a homogeneous strain field assumption.  相似文献   

2.
The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. Based on the discrete element method (DEM), a DEM model for die compaction was established, and the Hertz contact model was modified into an elastoplastic contact model that was more suitable for metal-powder compaction. The evolution of the topological properties of the contact network and its mechanism during powder compaction was explored using the elastoplastic contact model. The results demonstrate that the friction behavior between the particles is closely related to the topological properties of the contact network. Side wall friction results in smaller clustering coefficient (CC) and excess contact (EC) in the lower region near the side wall. Corresponding to this phenomenon, the upper region near the side wall has more high-stress particles when the major principal stress threshold was considered, and the CC and EC are significantly higher than those in the other regions. This study provides a theoretical basis for improving powder compaction behavior.  相似文献   

3.
N. W. Page 《Shock Waves》1994,4(2):73-80
A physically based model for the shock Hugoniot of a powdered material is described which allows separate identification of the cold and thermal contributions to pressure and specific internal energy. Special features of this model are provision for the effects of porosity on the stress state and an empirically determined cold loading contribution to pressure. The model was tested against published Hugoniot data for iron and gave excellent agreement for shock pressures ranging from low to high values.This shock Hugoniot was used to explore the shocked state of 4 samples of iron powder derived from commercially available material. The purpose of this study was to investigate the effect of powder particle characteristics and initial starting densities on the shocked state.The powder samples investigated had a range of morphologies and sizes. Powders with either a large shape factor or high internal friction, as determined in shear cell experiments, exhibited a higher stiffness in the cold loading curve. In the shocked state, this translated into a higher cold component of pressure and energy than found in the other powders.The effect of initial powder density was studied by applying the Hugoniot model to two impact initiated shock loadings, one for a stainless steel flyer impacting at 0.5 km/s and one at the higher velocity of 2.0 km/s. Both were applied to iron powder targets preloaded to a range of initial densities. For a given impact event, the proportion of shock energy in the thermal mode was found to decrease with increasing initial density. This decrease was more pronounced at higher shock strengths. As a result of the decreasing component of thermal energy with higher initial density, there was a reduction in the continuum temperature behind the shock. However, the corresponding increase in the component of cold energy with the falling relative contribution from the thermal energy lead to increasing density behind the shock suggesting that there is a trade off in terms of temperature and density achievable with a given impact event.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
A finite-element model of the cold compaction of ceramic powders by uniaxial pressing is developed and validated by comparison with experimental data. The mechanical behavior of processing powders is assumed according to the modified Drucker-Prager cap model. The frictional effects and the mechanical behavior of tools involved in the process are taken into account. The proposed model allows evaluation of the density distribution into the processed part, as well as stress and strain fields. Variations of the density distribution due to the unloading and the ejection of the part are evaluated Published in Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 135–143, October 2006.  相似文献   

5.
Scale effects on strength of geomaterials, case study: Coal   总被引:1,自引:0,他引:1  
Scale effects on the strength of coal are studied using a discrete element model. The key point of the model is its capability to discriminate between the “strictly sample size” effect and the “Discrete Fracture Network (DFN) density” effect on the mechanical response. Simulations of true triaxial compression tests are carried out to identify their respective roles. The possible bias due to the discretization size distribution of the discrete element model is investigated in detail by considering low-resolution configurations. The model is shown to be capable of quantitatively reproducing the dependency of the maximum strength on the size of the sample. This relationship mainly relies on the DFN density. For all given sizes, as long as the DFN density remains constant with a uniform distribution or if discontinuities are absent in the considered medium, the maximum strength of the material remains constant.  相似文献   

6.
In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.  相似文献   

7.
This paper presents an experimental and numerical study of the packing, compression, and caking behaviour of spray dried detergent(SDD) powders with a two-fold aim: an experimental process of observation and evaluation of the packing, compression and caking behaviour of SDD powders, and a numerical approach based on discrete element modelling(DEM). The mechanical properties, including the stress–strain response and the corresponding porosity change as a function of consolidation stress in a confined cylinder, the stress–strain response during unconfined shearing and the cake strength as a function of consolidation stress, were evaluated and compared for different SDD powders using an extended uniaxial tester(Edinburgh Powder Tester – EPT). The experiments using EPT showed excellent reproducibility in the measurement of packing, compression and caking behaviour and were therefore very useful for describing the handling characteristics of these powdered products including screening new products and different formulations. It was found that the sample with higher moisture had lower bulk porosity but higher compressibility and cake strength. The porosity, compressibility and cake strength were found to vary across different size fractions of the same sample. The larger sieve-cut samples had higher initial bulk porosity, compressibility and cake strength. It is revealed that moisture plays a significant role in packing, compression, and shearing behaviour of the powder. Three-dimensional DEM modelling using a recently developed elasto-plastic adhesive-frictional contact model showed that the contact model is able to capture the detergent behaviour reasonably well and can be used to model complex processes involving these powders.  相似文献   

8.
The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between particles, a discrete equation based on continuum mechanics is proposed to investigate the heat flux. Heat generated internally by friction between moving particles is determined by kinetic equations. For the proposed model, numerical results are obtained by a particle-flow-code-based program. Temperature profiles are determined at different locations and times. At a fixed location, the increase in temperature shows a logarithmic relationship with time. Investigation of three different systems indicates that the geometric distribution of the particulate material is one of the main influencing factors for the heat conduction process. Higher temperature is generated for denser packing, and vice versa. For smaller uniform particles, heat transfers more rapidly.  相似文献   

9.
The roller-spreading and blade-spreading are main powder spreading methods in powder-bed additive manufacturing. The discrete element method was introduced to simulate nylon powder spreading by both roller and blade spreaders. The two spreading processes were compared from several aspects including particle flow behavior, particle contact forces, forces exerted on spreaders, particle segregation and powder layer density. It is found that powder spreading methods mainly affect the movement trajectory of particles, particle contact forces and forces exerted on spreaders. Complicated dispersion and circulation movement of particles occur inside the powder pile by roller-spreading, while particles have relatively weak dispersion by the blade-spreading. The normal force applied to the roller introduces a compacting effect on the powder pile and creates strong force chains that distribute uniformly in the powder pile. Therefore, the powder bed with higher density can be obtained by roller-spreading in thicker powder layer due to the compacting effect. The blade spreader sustains tangential force mainly, so the blade-spreading process limits its application to thicker powder layer. As the powder layer thickness increases, the roller-spreading is more sensitive to segregation index than that of the blade-spreading. The comprehensive comparison of two spreading processes provides criteria for selecting spreading methods.  相似文献   

10.
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically.  相似文献   

11.
Summary The compaction process of iron powder is considered. Due to negligible elastic strains the rigid-plastic model is applied. A yield condition containing the first stress invariant is used. All material functions depend on the relative density of the powder, which changes during the compaction process. Siebel friction law is applied, and the friction factor is considered to be depending on the relative density. Various material functions are applied in the numerical simulation, and the results are compared with experimentally obtained data. The best fitting material functions and friction factors are obtained. Accepted for publication 18 July 1996  相似文献   

12.
A four-point combined DE/FE algorithm is proposed to constrain the rotation of a discrete element about its linked point and analyze the cracks propagation of laminated glass. In this approach, four linked points on a discrete element are combined with four nodes of the corresponding surface of a finite element. The penalty method is implemented to calculate the interface force between the two subdomains, the finite element (FE) and the discrete element (DE) subdomains. The sequential procedure of brittle fracture is described by an extrinsic cohesive fracture model only in the DE subdomain. An averaged stress tensor for granular media, which is automatically symmetrical and invariant by translations, is used to an accurate calculation of the averaged stress of the DE. Two simple cases in the elastic range are given to certify the effectiveness of the combined algorithm and the averaged stress tensor by comparing with the finite element method and the mesh-size dependency of the combined algorithm and the cohesive model is also investigated. Finally, the impact fracture behavior of a laminated glass beam is simulated, and the cracks propagation is compared with experimental results showing that the theory in this work can be used to predict some fracture characteristics of laminated glass.  相似文献   

13.
Elasticity and strength of partially sintered ceramics   总被引:1,自引:0,他引:1  
A discrete element model for the elastic and fracture behavior of partially sintered ceramics is presented. It accounts for the granular character of the material when a large amount of porosity (typically >0.2-0.4) is left after sintering. The model uses elastic force-displacement laws to represent the bond formed between particles during sintering. Bond fracture in tension and shearing is accounted for in the model. Realistic numerical microstructures are generated using a sintering model on random particle packings. In particular, packings with fugitive pore formers are used to create partially sintered microstructures with large pores. The effective elastic response and the strength of these microstructures are calculated in tension and compression. The link between important microstructural features such as bond size or coordination number and macroscopic behavior is investigated. In particular, it is shown that porosity alone is not sufficient to account for the mechanical properties of a partially sintered material.  相似文献   

14.
It has long been recognized that the rotation of single particles plays a very important role in simulations of granular flow using the discrete element method (DEM). Many researchers have also pointed out that the effect of rolling resistance at the contact points should be taken into account in DEM simulations. However, even for the simplest case involving two-dimensional circular particles, there is no agreement on the best way to define rolling and sliding, and different definitions and calculations of rolling and sliding have been proposed. It has even been suggested that a unique rolling and sliding definition is not possible. In this paper we assess results from previous studies on rolling and sliding in discrete element models and find that some researchers have overlooked the effect of particles of different sizes. After considering the particle radius in the derivation of rolling velocity, all results reach the same outcome: a unique solution. We also present a clear and simple derivation and validate our result using cases of rolling. Such a decomposition of relative motion is objective, or independent of the reference frame in which the relative motion is measured.  相似文献   

15.
The discrete element method (DEM), developed by Cundall and Strack (1979) to solve geomechanical problems, is used to simulate the mechanical behavior of granules. According to the DEM, an individual granule can be modeled as a realistic mechanical system consisting of primary particles bonded by interaction forces.Granulometric properties of the model material, zeolite 4A, have been measured to determine their macro properties. To investigate the compression behavior, a compression test was performed using a strength tester on single granules between two pistons. A modeled granule consisting of more than 22,000 primary particles was generated. The micro properties of the modeled granule have been precisely set to allow its macro properties to be equivalent to the macro properties of zeolite 4A granules. To calibrate the mechanical properties, diametrical compression was simulated using two rigid walls stressed at a constant stressing velocity. The force–displacement curve of the modeled granule at compression has been calibrated by the experimental curve of zeolite 4A.  相似文献   

16.
A series of numerical tests was conducted to study the micromechanical properties and energy dissipation in polydisperse assemblies of spherical particles subjected to uniaxial compression. In general, distributed particle size assemblies with standard deviations ranging from 0% to 80% of the particle mean diameter were examined. The microscale analyses included the trace of the fabric tensor, magnitude and orien- tation of the contact forces, trace of stress, number of contacts and degree of mobilization of friction in contacts between particles. In polydisperse samples, the average coordination numbers were lower than in monodisperse assemblies, and the mobilization of friction was higher than in monodisperse assemblies due to the non-uniform spatial rearrangement of spheres in the samples and the smaller displacements of the particles. The effect of particle size heterogeneity on both the energy density and energy dissipation in systems was also investigated.  相似文献   

17.
《力学快报》2020,10(2):79-86
To simulate the progressive failure of slope, a block particle coupled model is introduced. Particle oriented cell mapping(POCM) algorithm is used to enhance the search efficiency, and particlepoint, particle-edge, particle-face contact detecting method is adopted to establish contact pair between particles and blocks precisely. Strain softening Mohr Coulomb model with tensile cutoff is adopted for blocks, and brittle Mohr Coulomb model is used for particles. The particle-block replacement approach is used to describe the fracture and fragmentation process of continuum media. Once the cohesion or tensile strength of one block reaches zero, the block will be deleted,and particles are generated at the same place with all information inherited from the deleted block. Some numerical cases related to landslides demonstrate the precision and rationality of the coupled model.  相似文献   

18.
Summary We explore applications of the Finite Element Method (FEM) to both Veselov and Lee discrete mechanics in this paper. Based on the FEM, disretizations of continuous Lagrangians are developed and corresponding integrators are obtained. Error estimates for variational integrators are also given. This work is supported by the National Natural Science Foundation of China (grant Nos. 90103004, 10171096) and the National Key Project for Basic Research of China (G1998030601).  相似文献   

19.
The three-dimensional finite-discrete element method (FEM/DEM) is applied to the simulation of tire-sand interactions, where the tire is discretized into hexahedron finite elements and sand is modeled by using the discrete element method. The feasibility and effectiveness of the method are proven by comparing the simulation results with the current reported results. Since long test roads are usually required for investigating tire running behaviors, which lead to large-scale simulation models and time consuming problems, the alternately moving road method is proposed to handle this problem. It can simulate tire running behaviors on an arbitrary length sand road with a constant road length value. The numerical model of a lug tire running on a bisectional road with fine and coarse sand is established to verify the feasibility of the method.  相似文献   

20.
Unified Way for Dealing with Three-Dimensional Problems of Solid Elasticity   总被引:3,自引:0,他引:3  
IntroductionComputinganalysisfortheproblemsofthethree_dimensionalsolid ,eachtypeofplatesandshellsetc .,numericalalgorithmincommonusehasfinitedifferencemethod ,finiteelementmethod ,weightedresidualsmethodandBEMetc.Owingtocomplexityofthethree_dimensionalpro…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号