首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
This paper presents an exact closed-form solution for the Eshelby problem of a polygonal inclusion with graded eigenstrains in an anisotropic piezoelectric half plane with traction-free on its surface. Using the line-source Green’s function, the line integral is carried out analytically for the linear eigenstrain case, with the final expression involving only elementary functions. The solutions are applied to the semiconductor quantum wire (QWR) of square, triangular, and rectangular shapes, with results clearly illustrating various influencing factors on the induced fields. The exact closed-form solution should be useful to the analysis of nanoscale QWR structures where large strain and electric fields could be induced by the non-uniform misfit strain.  相似文献   

2.
This paper proposes a method to solve problems for interface tunnel defects in a piecewise-homogeneous elastic material that is under generalized plane strain and has no planes of elastic symmetry. The method is based on integral relations between the discontinuities and sums of the components of the displacement vector and stress tensor at the interface. Closed-form solutions are obtained for a system of interface tunnel inclusions with mixed contact conditions between the space and the inclusions. The dependences of the indices of singularity of the solutions on orthogonal coordinate transformation are established for different combinations of materials of monoclinic and orthorhombic systems. The effect of the antiplane component on the behavior of the solutions is revealed __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 6, pp. 36–45, June 2008.  相似文献   

3.
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.  相似文献   

4.
Summary Green's functions of the displacement boundary value problem are derived within two-dimensional thermoelasticity for a heat source in an infinite plane with an arbitrary shaped rigid inclusion. The following two cases are considered: either rigid-body displacements and rigid-body rotations of the inclusion are allowed or no rigid-body displacements and no rigid-body rotations of the inclusion are possible. To solve these problems, fundamental solutions are developed for a point heat source, for rigid-body rotations of the inclusion, and for concentrated loads acting on the inclusion. Complex stress functions, temperature function, a rational mapping function and the thermal dislocation method are used for the analysis. In analytical examples, distributions of stresses are developed for an infinite plane with a rectangular rigid inclusion. Received 5 August 1998; accepted for publication 1 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号