首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new method for determining the elasto-dynamic stress fields associated with the propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation of the corresponding dynamic stress intensity factors. The latter are very important quantities in dynamic brittle fracture mechanics, since they determine the crack path and eventual branching instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially propagating at a given time-dependent velocity, that changes instantaneously both its direction and its speed of propagation. We will give the explicit dependence of the stress intensity factor just after kinking as a function of the stress intensity factor just before kinking, the kinking angle and the instantaneous velocity of the crack tip.  相似文献   

2.
The dynamic propagation of a bifurcated crack under arbitrary loading is studied. Under plane loading configurations, it is shown that the model problem of the determination of the dynamic stress intensity factors after branching is similar to the anti-plane crack branching problem. By analogy with the exact results of the mode III case, the energy release rate immediately after branching under plane situations is expected to be maximized when the branches start to propagate quasi-statically. Therefore, the branching of a single propagating crack under mode I loading should be energetically possible when its speed exceeds a threshold value. The critical velocity for branching of the initial single crack depends only weakly on the criterion applied for selecting the paths followed by the branches. However, the principle of local symmetry imposes a branching angle which is larger than the one given by the maximum energy release rate criterion. Finally, it is shown that an increasing fracture energy with the velocity results in a decrease in the critical velocity at which branching is energetically possible.  相似文献   

3.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

4.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

5.
Dynamic extension of Sih's fracture criterion based on strain energy density factor, rc (dW/dV), is used to analyze dynamic crack propagation and branching. Influence of the nonsingular components, which are known as the higher order terms (HOT) in the crack tip stress field, on the strain energy density distribution at a critical distance surrounding the crack tip moving at constant crack velocity is examined. This rc (dW/dV) fracture criterion is then used to analyze available dynamic photoelastic results of crack branching and of engineering materials.  相似文献   

6.
Summary  The steady-state of a propagation eccentric crack in a piezoelectric ceramic strip bonded between two elastic materials under combined anti-plane mechanical shear and in-plane electrical loadings is considered in this paper. The analysis based on the integral transform approach is conducted on the permeable crack condition. Field intensity factors and energy release rate are obtained in terms of a Fredholm integral equation of the second kind. It is shown for this geometry that the crack propagation speed has influence on the dynamic energy release rate. The initial crack branching angle for a PZT-5H piezoceramic structure is predicted by the maximum energy release rate criterion. Received 23 January 2001; accepted for publication 18 October 2001  相似文献   

7.
Dynamic crack propagation experiments have been performed using wedge loaded double cantilever beam specimens of an austenitized, quenched and tempered 4340 steel. Measurements of the dynamic stress intensity factor have been made by means of the optical method of caustics. The interpretation of experimental data, obtained from the shadow spot patterns photographed with a Cranz-Schardin high speed camera, is based on an elastodynamic analysis. The instantaneous value of the dynamic stress intensity factor KdI is obtained as a function of crack tip velocity. Finally, the interaction of reflected shear and Rayleigh waves with the moving crack tip stress field is considered.  相似文献   

8.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

9.
动态焦散线实验方法及其在断裂力学中的初步应用   总被引:8,自引:0,他引:8  
本文给出了静、动态的焦散线方程,和确定裂纹尖端位置、动应力强度因子K_1~d的计算公式,并证明了在裂纹扩张速度较低时,可用静态公式计算,还研究了带预裂纹的三点弯曲梁和圆环在冲击载荷下的断裂问题,得到了系列动态焦散线照片、裂尖位置和动应力强度因子随时间的变化曲线。  相似文献   

10.
用复变函数方法,研究了压电材料中反平面运动裂纹的动态断裂问题,研究表明:介质内的耦合场与裂纹运动速度有关,在裂纹尖端有奇异。应力强度因子与裂纹运动速度无关,与纯弹性结构一致,沿裂纹延长线扩展的动态能量释放率可用应力强度因子表示,而与电载荷无关,裂纹运动的高速度具有止裂作用,在一定条件下,裂纹有扩展成曲线裂纹或分叉的趋势。  相似文献   

11.
The dynamic fracture behavior of polyester/TiO2 nanocomposites has been characterized and compared with that of the matrix material. A relationship between the dynamic stress intensity factor,K I and the crack tip velocity,å, has been established. Dynamic photoelasticity coupled with high-speed photography has been used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the nanocomposites. Single-edge notch tension and modified compact tension specimens were used to obtain a broad range of crack velocities. Fractographic analysis was conducted to understand the fracture process. The results showed that crack arrest toughness in nanocomposites was 60% greater than in the matrix material. Crack propagation velocities prior to branching in nanocomposites were found to be 50% greater than those in polyester.  相似文献   

12.
Thermomagnetoelectroelastic crack branching of magnetoelectro thermoelastic materials is theoretically investigated based on Stroh formalism and continuous distribution of dislocation approach. The crack face boundary condition is assumed to be fully thermally, electrically and magnetically impermeable. Explicit Green’s functions for the interaction of a crack and a thermomagnetoelectroelastic dislocation (i.e., a thermal dislocation, a mechanical dislocation, an electric dipole and a magnetic dipole located at a same point) are presented. The problem is reduced to two sets of coupled singular integral equations with the thermal dislocation and magnetoelectroelastic dislocation densities along the branched crack line as the unknown variables. As a result, the formulations for the stress, electric displacement and magnetic induction intensity factors and energy release rate at the branched crack tip are expressed in terms of the dislocation density functions and the branch angle. Numerical results are presented to study the effect of applied thermal flux, electric field and magnetic field on the crack propagation path by using the maximum energy release rate criterion.  相似文献   

13.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

14.
The multiaxiality factor defined as the ratio of the von-Misses equivalent stress to the volumetric stress has been reported to be related to the initiation and progression of failure in structures. It is demonstrated in the present paper that the location around the crack tip where the multiaxiality factor obtains minimum value is an indicator of the direction of minimum material fracture resistance for crack propagation. It is also proposed that the location along the direction of crack propagation path where multiaxiality factor obtains minimum value is considered as the critical distance away from the crack tip, where the strain energy density should be evaluated and compared to its critical value. Theoretical predictions correlate well with the test results for the investigated cases.  相似文献   

15.
We demonstrate the use of X-ray phase contrast imaging with sub-microsecond temporal resolution to obtain quantitative visualization of dynamic fracture processes in brittle solids. We examine an amorphous solid (fused silica), a ceramic single crystal (single-crystal quartz), and a polycrystalline ceramic (boron carbide), in the form of single-edge notched specimens loaded using a three-point apparatus at nominal strain rates up to \(\sim \)800 s?1. We observe that the crack tip speed for boron carbide is relatively independent of mode I stress intensity factor rate (\(\dot {K}_{\mathrm {I}}\)) for these rates of loading, while that of fused silica and single-crystal quartz increases with \(\dot {K}_{\mathrm {I}}\). Further, for the amorphous and single crystal cases, we observe the development of a crack tip instability in the form of crack branching as the crack tip speed approaches 45% of the Rayleigh wave speed. This suggests that strain-rate-dependent mechanisms contribute to crack branching. Such mechanisms may, in turn, affect the macroscopic fracture properties of these materials.  相似文献   

16.
The stress intensity factor of a half-plane crack extending non-uniformly in an isotropic elastic solid subjected to stress wave loading is determined. A plane stress pulse strikes the crack at time t = 0, the wavefront being parallel to the plane of the crack. At some arbitrary later time t = τ, the crack begins to extend at a non-uniform rate. It is found that the stress intensity factor is a universal function of instantaneous crack-tip velocity times the stress intensity factor for an equivalent stationary crack. An energy rate balance fracture criterion is applied to obtain an equation of motion for the crack tip. The delay time between the arrival of the incident pulse and the onset of fracture is also calculated for this fracture criterion.  相似文献   

17.
The equation of static and dynamic caustics, and the formulae determining the position of crack tip and stress intensity factor are given. It is proven that for the case of low speed of crack propagation the static formula is applicable in calculation. A simple method to measure the static stress-optical constants is proposed. An Optical system which is suitable for the experiments of dynamic caustics was set-up and used to study the fracture in beam and rings with initial crack under impact loading. A series of dynamic caustics' photographs and curves showing the variations of corresponding crack lengths and dynamic stress intensity factors with time, are presented.  相似文献   

18.
A singular integral equation containing the crack opening displacement (COD) is developed for solving plane elasticity problems. The crack may contain any number of kinks at different intervals and orientations, such as a saw-tooth shape. Cracks in the form of a sine wave can also be treated. The crack tip stress intensity factors are evaluated for a variety of crack shapes and the results are displayed graphically. The distance between the crack tips is found to be a dominant factor on the crack tip stress intensity while the angle between the tangent to the crack tip and load direction determines the proportion of Mode I and II stress intensity factors.  相似文献   

19.
20.
The governing equations for determination of dynamic stress-intensity factor at the tip of a running crack are developed from a dynamic analysis of dynamic isopachicfringe patterns. The equations are applied to investigate dynamic crack propagation in Homalite 100 by means of dynamic holographic interferometry. A simple method based on simultaneous measurement of the widths of two isopachics allows determination of Irwin's additional stress field, and a dynamic correction function for the stress-intensity factor is derived. It was found that dynamicK-values obtained from dynamic isopachic-fringe-pattern analysis are lower than their corresponding static values. This implies a modification of the crack velocity vs. stress-intensity-factor relationship towards lower values ofK for dynamic crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号