首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelastic contact problems can posess non-unique and/or unstable steady-state solutions if there is frictional heating or if there is a pressure-dependent thermal contact resistance at the interface. These two effects have been extensively studied in isolation, but their possible interaction has never been investigated. In this paper, we consider an idealized problem in which a thermoelastic rod slides against a rigid plane with both frictional heating and a contact resistance. For sufficiently low sliding speeds, the results are qualitatively similar to those with no sliding. In particular, there is always an odd number of steady-state solutions; if the steady-state is unique it is stable and if it is non-unique, stable and unstable solutions alternate, with the outlying solutions being stable. However, we identify a sliding speed V0 above which the number of steady states is always even (including zero, implying possible non-existence of a steady-state) and again stable and unstable states alternate. A parallel numerical study shows that for V>V0 there are some initial conditions from which the contact pressure grows without limit in time, whereas for V<V0 the system will always tend to one of the stable steady states.  相似文献   

2.
In the study of the essential features of thermoelastic contact, Comninou and Dundurs (J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called “Aldo model”, where the full 3D body is replaced by a large number of thin rods normal to the interface and insulated between each other, and the system was further reduced to 2 rods by Barber's Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat flux at the interface driven by temperature differences of the bodies, and opposed by a contact resistance, finding possible multiple and history dependent solutions, depending on the imposed temperature differences.The Aldo model is here extended to include the presence of frictional heating. It is found that the number of solutions of the problem is still always odd, and Barber's graphical construction and the stability analysis of the previous case with no frictional heating can be extended. For any given imposed temperature difference, a critical speed is found for which the uniform pressure solution becomes non-unique and/or unstable. For one direction of the temperature difference, the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions occur, outermost solutions (those involving only one rod in contact) are always stable.A full numerical analysis has been performed to explore the transient behaviour of the system, in the case of two rods of different size. In the general case of N rods, Barber's conjecture is shown to hold since there can only be two stable states for all the rods, and the reduction to two rods is always possible, a posteriori.  相似文献   

3.
When two materials are placed in contact along an interface, thermoelastic effects can separate the surfaces and create “hot spots” when there is sufficient frictional heating fVp generated at the interface, even if the two surfaces are nominally flat. Additionally, heat can flow because the bodies are generally at different temperatures, and this is an independent cause of separation, generally when heat flows into the less distortive material. These two effects have been considered separately, and here we consider the case with interaction of the two effects, showing possible non-existence, multiplicity and instability of solutions. Approximate Hertzian solutions for the separated contact regime are very limited, particularly for the frictional heating case. Hence, a new efficient full numerical solution is developed, and compared with direct FEM results, the latter permitting also the assessment of stability in the transient regime. Connection to previous results for simple rod models is made. The case of heat flow into the more distortive material is discussed.  相似文献   

4.
The two-dimensional thermoelastic sliding frictional contact of functionally graded material (FGM) coated half-plane under the plane strain deformation is investigated in this paper. A rigid punch is sliding over the surface of the FGM coating with a constant velocity. Frictional heating, with its value proportional to contact pressure, friction coefficient and sliding velocity, is generated at the interface between the punch and the FGM coating. The material properties of the coating vary exponentially along the thickness direction. In order to solve the heat conduction equation analytically, the homogeneous multi-layered model is adopted for treating the graded thermal diffusivity coefficient with other thermomechanical properties being kept as the given exponential forms. The transfer matrix method and Fourier integral transform technique are employed to convert the problem into a Cauchy singular integral equation which is then solved numerically to obtain the unknown contact pressure and the in-plane component of the surface stresses. The effects of the gradient index, Peclet number and friction coefficient on the thermoelastic contact characteristics are discussed in detail. Numerical results show that the distribution of the contact stress can be altered and therefore the thermoelastic contact damage can be modified by adjusting the gradient index, Peclet number and friction coefficient.  相似文献   

5.
Both of the frictional heat and thermal contact resistance have a grave responsibility for the localized high temperature (hot spots) at the contact region, which is known as one of the most dangerous appearances in the brakes systems. In this paper, we study the thermoelastic instability (TEI) of a functionally graded material (FGM) half-plane sliding against a homogeneous half-plane at the in-plane direction. The interaction of the frictional heat and thermal contact resistance is taken into account in the TEI analysis. The material properties of the FGM half-plane are supposed to follow the exponential function along the thickness direction. The coupled TEI problem of FGMs is solved by using the perturbation method. The frictionally excited TEI of FGMs is also considered by neglecting the effect of the thermal contact resistance. The results show that the thermal contact resistance, sliding speed and gradient index have significant influence on the TEI. It is found that the variation of the gradient index of FGMs can increase the critical sliding speed and critical heat flux, and therefore improve the TEI of the sliding system.  相似文献   

6.
Recently, we found that a new form of coupled instability, named ThermoElastic Dynamic Instability (TEDI), can occur by interaction between frictional heating and the natural dynamic modes of sliding bodies. This is distinct from the classical dynamic instabilities (DI) which is produced by an interaction between the frictional forces at the sliding interface and the natural modes of vibration of the bodies if the friction coefficient is sufficiently high, and also from ThermoElastic Instability (TEI), which is due to the interaction of frictional heating and thermal expansion, leading for example to low pitched brake noise above some critical speed. This result was relative to an highly idealized system, comprising an elastic layer sliding over a rigid plane including both dynamic and thermoelastic effects, but neglecting shear waves at the interface due to frictional tractions (from which the denomination “frictionless TEDI”). We demonstrate here that including these shear waves destabilizes both the shear and dilatational vibration modes of the system at arbitrarily small friction coefficients and speeds, where DI and TEI are predicted to be stable. A detailed study of the new modes and transient simulations show that for low pressures and high speed, the system tends towards the results of the previous model (“frictionless TEDI”), i.e. the tendency to a state in which the layer bounces over the plane, with alternating periods of sliding contact and separation. In the case of low speeds and high pressures, viceversa, the system is dominated by the modes near the resonance of the shear and dilatational modes, with a resulting complex behaviour, but generally leading to stick-slip regimes, reducing the jumping mode of “frictionless TEDI”, because stick reduces or stops frictional heating production.  相似文献   

7.
The paper studies a class of multiple-zone sliding contact problems. This class is general enough to include frictional and thermal effects, and anisotropic response of the indented material. In particular, a rigid die (indenter) slides with Coulomb friction and at constant speed over the surface of a deformable and conducting body in the form of a 2D half-space. The body is assumed to behave as a thermoelastic transversely isotropic material. Thermoelasticity of the Green–Lindsay type is assumed to govern. The solution method is based on integral transforms and singular integral equations. First, an exact transform solution for the auxiliary problem of multiple-zone (integer n > 1) surface tractions is obtained. Then, an asymptotic form for this auxiliary problem is extracted. This form can be inverted analytically, and the result applied to sliding contacts with multiple zones. For illustration, detailed calculations are provided for the case of two (n = 2) contact zones. The solution yields the contact zone width and location in terms of sliding speed, friction, die profile, and also the force exerted. Calculations for the hexagonal material zinc illustrate effects of speed, friction and line of action of the die force on relative contact zone size, location of maximal values for the temperature and the compressive stress, and the maximum temperature for a given maximum stress. Finally, from our general results, a single contact zone solution follows as a simple limit.  相似文献   

8.
The conductive heat transfer between two elastic bodies in the static contact can cause the system to be unstable due to the interaction between the thermoelastic distortion and pressure-dependent thermal contact resistance. This paper investigates the thermoelastic contact instability of a functionally graded material (FGM) layer and a homogeneous half-plane using the perturbation method. The FGM layer and half-plane are exposed to a uniform heat flux and are pressed together by a uniform pressure. The material properties of the FGM layer vary exponentially along the thickness direction. The characteristic equation governing the thermoelastic stability behavior is obtained to determine the stability boundary. The effects of the gradient index, layer thickness and material combination on the critical heat flux are discussed in detail through a parametric study. Results indicate that the thermoelastic stability behavior can be modified by adjusting the gradient index of the FGM layer.  相似文献   

9.
机械传动关键活动零部件接触副往往受到力载荷和摩擦热载荷的耦合作用,使得接触界面间的接触力学行为的分析变得极其复杂. 利用基于等效夹杂方法建立的考虑热对流非均质材料热弹接触力学分析模型研究不同摩擦系数、夹杂位置和材料属性等参数对材料表面及内部温升及热应力分布影响规律. 此外,进一步分析了接触副材料中含分布球形夹杂时摩擦热造成的影响. 结果表明:接触副表面温升梯度受热对流系数的影响较大;下表面温升和热应力随摩擦系数增大而增大;分布夹杂则将接触副材料下表面温升及热应力分布变得更为复杂.   相似文献   

10.
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials, and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials. A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper, which can achieve 600°C at the interface. Based on this system, the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated, under different interface pressures, interface roughnesses and temperatures, respectively. At the same time, the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated. Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.  相似文献   

11.
Yildirim  B.  Yilmaz  K. B.  Comez  I.  Guler  M. A. 《Meccanica》2019,54(14):2183-2206

With the increasing research in the field of contact mechanics, different types of contact models have been investigated by many researchers by employing various complex material models. To ascertain the orthotropy effect and modeling parameters on a receding contact model, the double frictional receding contact problem for an orthotropic bilayer loaded by a cylindrical punch is taken into account in this study. Assuming plane strain sliding conditions, the governing equations are found analytically using Fourier integral transformation technique. Then, the resulting singular integral equations are solved numerically using an iterative method. The weight function describing the asymptotic behavior of the stresses are investigated in detail and powers of the stress singularities are provided. To control the trustworthiness and correctness of the analytical formulation and to compare the resulting stress distributions and contact boundaries, a numerically efficient finite element method was employed using augmented Lagrange contact algorithm. The aim of this paper is to investigate the orthotropy effect, modeling parameters and coefficients of friction on the surface and interface stresses, surface and interface contact boundaries, powers of stress singularities, weight function and to provide highly parametric benchmark results for tribological community in designing wear resistant systems.

  相似文献   

12.
Summary A transient contact problem with frictional heating and wear for two nonuniform sliding half-spaces is considered. One of the two half-spaces is assumed to be slightly curved to give a Hertzian initial pressure distribution: the other is a rigid nonconductor. Under the assumption that the contact pressure distribution could be described by Hertz formulas during all the process of interaction, the problem is formulated in terms of one integral equation of Volterra type with unknown radius of contact area. A numerical solution of this equation is obtained using a piecewise-constant presentation of an unknown function. The influence of operating parameters on the contact temperature and the radius of the contact area is studied. Accepted for publication 3 November 1996  相似文献   

13.
The research reported in this paper is focused on the instability of equilibrium and steady sliding states of elastic orthotropic layers in the presence of unilateral obstacles with Coulomb friction with emphasis on a divergence type instability called directional instability of frictional contact states that cannot occur in isotropic layers. Analytic expressions and numerical solutions are provided for the instability mode and for the coefficient of friction at the onset of instability. A parametric study is done to investigate how this coefficient of friction and the instability mode vary with changes of the system parameters. For certain combinations of material data, significantly low coefficients of friction were required for the onset of instability. A finite element model that approximates the continuum and a lumped model that captures some of the features of the continuum are presented.  相似文献   

14.
考虑材料温度相关性的二维轮轨弹塑性滑动接触温升分析   总被引:1,自引:0,他引:1  
伏培林  丁立  赵吉中  张旭  阚前华  王平 《力学学报》2020,52(5):1245-1254
轮轨滑动接触温升的准确预测对于轮轨的磨耗和疲劳研究均具有重要意义. 目前的轮轨温升解析或半解析模型通常考虑Hertz弹性接触压力分布和单一材料属性的温度相关性, 与实际的轮轨传热状态尚有一定偏差, 因此在轮轨滑动温升计算模型中考虑接触压力的塑性修正和多种材料属性的温度相关性, 有望提高温升预测结果的准确性. 基于弹塑性接触理论, 同时考虑热导率、比热容和摩擦系数的温度相关性, 通过基尔霍夫变换方法以热导率温度相关性函数的积分作为待求量, 将复杂的非线性Fourier导热方程转化成含单个变系数的简单偏微分方程形式, 从而构建了一种不限制材料温度相关性函数形式的统一隐式差分求解格式, 分别讨论了对流换热系数、法向载荷、蠕滑率以及行车速度对钢轨表面滑动温升的影响. 结果表明, 当列车高速行驶时, 对流换热系数对轮轨滑动温升的影响甚微; 蠕滑率和行车速度的增大, 均会引起摩擦功率的增大, 进而导致钢轨表面温度的升高; 钢轨表面滑动温升的峰值随法向载荷的增大而近似线性上升. 此外, 在轮轨滑动温升计算模型中考虑材料属性的温度相关性可有效避免对滑动温升的过分高估, 且摩擦系数的温度相关性对温升的影响要显著强于热导率和比热容.   相似文献   

15.
轮轨滑动接触温升的准确预测对于轮轨的磨耗和疲劳研究均具有重要意义. 目前的轮轨温升解析或半解析模型通常考虑Hertz弹性接触压力分布和单一材料属性的温度相关性, 与实际的轮轨传热状态尚有一定偏差, 因此在轮轨滑动温升计算模型中考虑接触压力的塑性修正和多种材料属性的温度相关性, 有望提高温升预测结果的准确性. 基于弹塑性接触理论, 同时考虑热导率、比热容和摩擦系数的温度相关性, 通过基尔霍夫变换方法以热导率温度相关性函数的积分作为待求量, 将复杂的非线性Fourier导热方程转化成含单个变系数的简单偏微分方程形式, 从而构建了一种不限制材料温度相关性函数形式的统一隐式差分求解格式, 分别讨论了对流换热系数、法向载荷、蠕滑率以及行车速度对钢轨表面滑动温升的影响. 结果表明, 当列车高速行驶时, 对流换热系数对轮轨滑动温升的影响甚微; 蠕滑率和行车速度的增大, 均会引起摩擦功率的增大, 进而导致钢轨表面温度的升高; 钢轨表面滑动温升的峰值随法向载荷的增大而近似线性上升. 此外, 在轮轨滑动温升计算模型中考虑材料属性的温度相关性可有效避免对滑动温升的过分高估, 且摩擦系数的温度相关性对温升的影响要显著强于热导率和比热容.  相似文献   

16.
The heat transfer at the interface of two solids in sliding/rolling contact depends on the constriction phenomenon which occurs at the vicinity of asperities. In order to study this problem, the micro-contacts are represented by multiple moving circular heat sources on the surface of a body. The studied body is constituted of a substrate and a surface coating. The thermal constriction resistance due to those contacts is determined analytically in this paper. The solution is developed by using the integral Fourier transforms, and it is valid regardless of the velocity and the relative contact size values. To cite this article: A. Baïri, C. R. Mecanique 331 (2003).  相似文献   

17.
超声马达转子摩擦材料磨损特性研究   总被引:8,自引:2,他引:6  
利用MPX-200型销-盘摩擦磨损试验机和自制的超声马达摩擦特性模拟试验台,考察了摩擦材料在普通滑动试验和超声马达试验条件下的磨损性能,研究了接触预压紧力和负载力矩对转子摩擦材料磨损状态的影响,并借助于扫描电子显微镜和光学显微镜对摩擦材料磨损机理进行分析,指出可用绝对转差率Sf描述超声马达定子和转子相对滑动摩擦磨损程度。结果表明,摩擦材料在超声马达试验条件下的磨损状态与普通滑动试验条件下的不同,普通滑动试验时摩擦材料磨损表面形成了层状覆盖膜,而超声马达转子摩擦材料磨损表面无覆盖膜,其表面呈现犁沟磨损和疲劳剥层磨损特征,这种磨损特征随预压紧力和负载力矩变化而变化,与绝对转差率Sf有关,且存在2个临界转变区。  相似文献   

18.
Quasi-static frictional contact problems for bodies of fairly general profile that can be represented as half planes can be solved using an extension of the methods of Ciavarella and Jäger. Here we consider the tangential traction distributions developed when such systems are subjected to loading that varies periodically in time. It is shown that the system reaches a steady state after the first loading cycle. In this state, part of the contact area (the permanent stick zone) experiences no further slip, whereas other points may experience periods of stick, slip and/or separation. We demonstrate that the extent of the permanent stick zone depends only on the periodic loading cycle and is independent of the initial conditions or of any initial transient loading phase. The exact traction distribution in this zone does depend on these factors, but the resultant of these tractions at any instant in the cycle does not. The tractions and slip velocities at all points outside the permanent stick zone are also independent of initial conditions, confirming an earlier conjecture that the frictional energy dissipation per cycle in such systems depends only on the periodic loading cycle. We also show that these parameters remain unchanged if the loading cycle is changed by a time-independent tangential force, provided this is not so large as to precipitate a period of gross slip (sliding).  相似文献   

19.
This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact region due to the sliding of the punch over the half-space surface and the heat radiation outside the contact region are taken into account. With the help of Fourier integral transform, the problem is reduced to a system of two singular integral equations. The equations are solved numerically by using Gauss-Jacobi and trapezoidal-rule quadratures. The effects of anisotropy and thermal effects are shown graphically.  相似文献   

20.
Significant challenges exist in the prediction of interaction forces generated from the interface between pneumatic tires and snow-covered terrains due to the highly non-linear nature of the properties of flexible tires, deformable snow cover and the contact mechanics at the interface of tire and snow. Operational conditions of tire-snow interaction are affected by many factors, especially interfacial slips, including longitudinal slip during braking or driving, lateral slip (slip angle) due to turning, and combined slip (longitudinal and lateral slips) due to brake-and-turn and drive-and-turn maneuvers, normal load applied on the wheel, friction coefficient at the interface and snow depth. This paper presents comprehensive three-dimensional finite element simulations of tire-snow interaction for low-strength snow under the full-range of controlled longitudinal and lateral slips for three vertical loads to gain significant mechanistic insight. The pneumatic tire was modeled using elastic, viscoelastic and hyperelastic material models; the snow was modeled using the modified Drucker-Prager Cap material model (MDPC). The traction, motion resistance, drawbar pull, tire sinkage, tire deflection, snow density, contact pressure and contact shear stresses were obtained as a function of longitudinal slip and lateral slip. Wheel states - braked, towed, driven, self-propelled, and driving - have been identified and serve as key classifiers of discernable patterns in tire-snow interaction such as zones of contact shear stresses. The predicted results can be applied to analytical deterministic and stochastic modeling of tire-snow interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号