首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The speed of Rayleigh surface waves, denoted CR, is the accepted upper limit for Mode I crack velocity in monolithic solids. In the current contribution, we discuss several critical issues associated with the velocity of Rayleigh surface waves and crack velocity in single crystal (SC) brittle solids, and the global and local influence of CR on crack path selection in particular.Recent cleavage experiments in SC silicon showed that crack velocity at certain cleavage planes and crystallographic orientations cannot exceed a small fraction of CR, and thereafter the crack deflects to other cleavage planes. Indeed, CR defined by the continuum mechanics ignores atomistic phenomena occurring during rapid crack propagation, and therefore is limited in predicting the crack velocity. Examination of these anomalies shows that this limitation lies in microstructural lattice arrangement and in anisotropic phonon radiation during rapid crack propagation. Globally, CR has no influence on the crack deflection phenomenon. However, the misfit in CR between the original plane of propagation and the deflected plane generates local instabilities along the deflection zone.  相似文献   

2.
In order to design composites and laminated materials, it is necessary to understand the issues that govern crack deflection and crack penetration at interfaces. Historically, models of crack deflection have been developed using either a strength-based or an energy-based fracture criterion. However, in general, crack propagation depends on both strength and toughness. Therefore, in this paper, crack deflection has been studied using a cohesive-zone model which incorporates both strength and toughness parameters simultaneously. Under appropriate limiting conditions, this model reproduces earlier results that were based on either strength or energy considerations alone. However, the general model reveals a number of interesting results. Of particular note is the apparent absence of any lower bound for the ratio of the substrate to interface toughness to guarantee crack penetration. It appears that, no matter how tough an interface is, crack deflection can always be induced if the strength of the interface is low enough compared to the strength of the substrate. This may be of significance for biological applications where brittle organic matrices can be bonded by relatively tough organic layers. Conversely, it appears that there is a lower bound for the ratio of the substrate strength to interfacial strength, below which penetration is guaranteed no matter how brittle the interface. Finally, it is noted that the effect of modulus mismatch on crack deflection is very sensitive to the mixed-mode failure criterion for the interface, particularly if the cracked layer is much stiffer than the substrate.  相似文献   

3.
Modern topics and challenges in dynamic fracture   总被引:2,自引:0,他引:2  
The field of dynamic fracture has been enlivened over the last 5 years or so by a series of remarkable accomplishments in different fields—earthquake science, atomistic (classical and quantum) simulations, novel laboratory experiments, materials modeling, and continuum mechanics. Important concepts either discovered for the first time or elaborated in new ways reveal wider significance. Here the separate streams of the literature of this progress are reviewed comparatively to highlight commonality and contrasts in the mechanics and physics.Much of the value of the new work resides in the new questions it has raised, which suggests profitable areas for research in the next few years and beyond. From the viewpoint of fundamental science, excitement is greatest in the struggle to probe the character of dynamic fracture at the atomic scale, using Newtonian or quantum mechanics as appropriate (a qualifier to be debated!). But lively interest is also directed towards modeling and experimentation at macroscales, including the geological, where the science of fracture is pulled at once by fundamental issues, such as the curious effects of friction, and the structural, where dynamic effects are essential to proper design or certification and even in manufacture.  相似文献   

4.
We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.  相似文献   

5.
In this work, a 2D discrete model (DM) applied to the dynamic crack propagation in brittle materials is developed and implemented. The proposed model is based on a particular discretization of Navier’s equations, presenting similarities to the Born model, with the advantage that the constants appearing in it are explicitly related to the elastic properties. This model overcomes the limitations in the choice of Poisson’s ratio present in other discrete models. Three numerical examples are presented to show the capability of this method in modelling wave propagation and dynamic fracture problems. The obtained results are in agreement with experimental and numerical results reported by other researchers.  相似文献   

6.
We present a new method for determining the elasto-dynamic stress fields associated with the propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation of the corresponding dynamic stress intensity factors. The latter are very important quantities in dynamic brittle fracture mechanics, since they determine the crack path and eventual branching instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially propagating at a given time-dependent velocity, that changes instantaneously both its direction and its speed of propagation. We will give the explicit dependence of the stress intensity factor just after kinking as a function of the stress intensity factor just before kinking, the kinking angle and the instantaneous velocity of the crack tip.  相似文献   

7.
The focus of the present paper is on the finite element modelling of dynamic fracture based on the concept of locally enriched element shape functions in the vicinity of the crack, in line with the eXtended Finite Element Method (X-FEM). For this purpose, the proper governing equations for the case of a propagating crack within a hyperelastic material is established, including the definition of the concept of material motion which kinematically describes the progression of the crack. Furthermore, two different approaches to describe the material degradation and separation are proposed. The first approach, denoted the material crack driving force model, is based on the concept of material (or configurational) forces associated with the material motion. The basic motivation is that, in this context, a driving force is identified at the crack tip, which points in the direction of maximum energy release upon crack propagation. An additional interesting feature of this force is that the projection in the crack propagation direction corresponds to the energy released for such a propagation, whereby an intuitive criterion for crack propagation based on the direction and magnitude of this force is proposed. The second approach is based on the classical cohesive zone concept, extended to include rate effects to capture experimentally observed phenomena such as growing process zones during propagation as well as limited crack propagation speeds well below the theoretical limit. Both models are investigated and compared in a couple of numerical examples in the latter part of the paper, showing both the predictive capabilities as well as some limitations of the two approaches. It has also been shown that, for a specific set of parameters, the two models can reproduce (almost) the same response.  相似文献   

8.
The major objective of this work has been to develop, within a continuum framework, a microstructurally-based computational theory to investigate dynamic failure in metals. To model the nucleation and propagation of failure surfaces at the microstructural scale, under large deformations and dynamic loading conditions, general finite-deformation theory, as relating to the decomposition of the deformation gradient, was tailored to monitor displacement incompatibilities and fracture in crystalline solids subjected to large deformations. Based on this proposed decomposition, a general fracture criterion for finitely deforming crystals, using the integral law of incompatibility, was developed. The analyses indicate that this newly proposed fracture formulation and criterion can be validated with experimental results, and can be used to accurately predict brittle and ductile failure modes for the large deformation of single crystals. As part of the newly proposed decomposition of the deformation gradient, sub-problems can also be solved for lattice distortions, such as twinning and geometrically necessary dislocation (GND) densities. Accordingly, the interactions of GND densities with cracks were investigated for single crystals. GND densities were shown to form as loops for stationary crack tips, but no loops formed for propagating cracks.  相似文献   

9.
Cleavage fracture in ferritic steels is often initiated in brittle carbides randomly distributed in the material. The carbides break as a result of a fibre loading mechanism in which the stress levels in the carbides are raised, as the surrounding ferrite undergoes plastic deformation. The conditions in the vicinity of the nucleated micro-crack will then determine whether the crack will penetrate or be arrested by the ferrite. The ferrite is able to arrest nucleated cracks through the presence of mobile dislocations, which blunt and shield the microcrack and thus lowers the stresses at the crack tip. Hence, the macroscopic toughness of the material directly depends on the ability of the ferrite to arrest nucleated micro-cracks and in turn on the plastic rate sensitivity of the ferrite. The initiation of cleavage fracture is here modelled explicitly in the form of a micro-crack, which nucleates in a brittle carbide and propagates into the surrounding ferrite. The carbide is modelled as an elastic cylinder or in a few cases an elastic sphere and the ferrite as an elastic viscoplastic material. The crack growth is modelled using a cohesive surface, where the tractions are governed by a modified exponential cohesive law. It is shown that the critical stress, required to propagate a microcrack from a broken carbide, increases with decreasing plastic rate sensitivity of the ferrite. The results also show that a low stress triaxiality and a high aspect ratio of the carbide promote the initiation of cleavage fracture from a broken carbide.  相似文献   

10.
Here we present a multiscale field theory for modeling and simulation of multi-grain material system which consists of several different kinds of single crystals and a large number of different kinds of discrete atoms. The theoretical construction of the multiscale field theory is briefly introduced. The interatomic forces are used to formulate the governing equations for the system. A compact tension specimen made of magnesium oxide is modeled by discrete atoms in front of the crack tip and finite elements in the far field. Results showing crack propagation through the atomic region are presented.  相似文献   

11.
In this work we present the finite element (FE) implementation of an atomistic formulation of balance equations and its application to coarse-grained (CG) simulation of dynamic fracture. First, we simulate a notched specimen that contains about 1.8 million atoms by the CG-FE method, and we compare the CG-FE results with that by all-atom molecular dynamics (MD) simulations. We find that CG-FE simulations with about 5% degrees of freedom of the MD simulation can capture the essential dynamic features, not in exact correspondence, but qualitatively and quantitatively similar to that obtained by MD simulations. We then proceed to simulate a series of micron-sized specimens by the CF-FE method. We find that it is the interaction of the forward propagating crack with the stress waves being reflected back by the boundaries of the specimen that triggers the dynamic instability and hence the branching of cracks in micron-sized specimens. The potential application of the method and future work for improvements are discussed.  相似文献   

12.
The dynamic propagation of a bifurcated crack under antiplane loading is considered. The dependence of the stress intensity factor just after branching is given as a function of the stress intensity factor just before branching, the branching angle and the instantaneous velocity of the crack tip. The jump in the dynamic energy release rate due to the branching process is also computed. Similar to the single crack case, a growth criterion for a branched crack is applied. It is based on the equality between the energy flux into each propagating tip and the surface energy which is added as a result of this propagation. It is shown that the minimum speed of the initial single crack which allows branching is equal to 0.39c, where c is the shear wave speed. At the branching threshold, the corresponding bifurcated cracks start their propagation at a vanishing speed with a branching angle of approximately 40°.  相似文献   

13.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

14.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

15.
High-speed holographic microscopy is applied to take three successive photographs of fast propagating cracks in Homalite 100 or in Araldite B at the moment of bifurcation. Crack speed at bifurcation is about 540 m/s on Homalite 100, and about 450 m/s on Araldite B. From the photographs, crack speeds immediately before and after bifurcation are obtained, and it is found that discontinuous change of crack speed does not exist at the moment of bifurcation in the case of Homalite 100, but exists in the case of Araldite B. From the photographs, crack opening displacement (COD) is also measured along the cracks as a function of distance r from the crack tips. The measurement results show that the CODs are proportional to √r before bifurcation. After bifurcation, the CODs of mother cracks are proportional to √r, though the CODs of branch cracks are not always proportional to √r. The energy release rate is obtained from the measured CODs, and it is found that energy release rate is continuous at bifurcation point in both cases of Homalite 100 and Araldite B. Energy flux that shows the energy flow toward a crack tip is also obtained.  相似文献   

16.
A weight function matrix is developed for obtaining the stress singularity coefficients at the edge of a plane crack, moving uniformly at an intersonic speed while subjected to arbitrary shear loading. This is then utilised for deriving, to first order, the perturbations of these coefficients associated with a small spatially and temporally varying perturbation of its edge. The perturbation solution is employed, in conjunction with a simple fracture criterion, to investigate the stability of a uniformly moving intersonic crack, subjected to following loads.  相似文献   

17.
Existing cohesive zone models assume that actual fracture zone of non-zero mass can be modeled by a line segment (cohesive zone) with no mass and inertia. In the present work, a simplified mass-spring model is presented to study inertia effect of cohesive zone on a mode-I steady-state moving crack. It is showed that fracture energy predicted by the present model increases dramatically when a finite limiting crack speed is approached. Reasonable agreement with known experiments indicates that the present model has the potential to catch the inertia effect of cohesive zone which has been ignored in existing cohesive zone models and better simulate dynamic fracture at high crack speed.  相似文献   

18.
Dynamic stability of a propagating crack   总被引:2,自引:0,他引:2  
In this work we investigate the stability of a straight two-dimensional dynamically propagating crack to small perturbation of its path. Willis and Movchan (J. Mech. Phys. Solids 43 (1995) 319; J. Mech. Phys. Solids 45 (1997) 591) constructed formulae for the perturbations of the stress intensity factors induced by a small three-dimensional dynamic perturbation of a nominally plane crack. Their solution is exploited here to derive equations for the in-plane and out-of-plane perturbations of the crack path making use of the Griffith fracture criterion and the principle of “local symmetry” (i.e the crack propagates so that local KII=0). We consider a crack propagating in a body loaded by a pair of point body forces and subjected to a remote uniaxial stress, aligned with the direction of the unperturbed crack. We assume that the loading follows the crack as the crack advances and is such that the unperturbed crack is subjected to Mode I loading. We perform an analysis of the stability of the dynamic crack in a similar way as in earlier work (Obrezanova et al., J. Mech. Phys. Solids 50 (2002) 57) on the quasistatically advancing crack. We present numerical results illustrating the influence of the crack velocity on the crack stability. Numerical computations of the possible crack paths have been performed which show that at velocities of crack propagation exceeding about one-third of the speed of Rayleigh waves the crack may admit one or more oscillatory modes of instability.  相似文献   

19.
One current challenge of linear elastic fracture mechanics (LEFM) is to take into account the non-linearities induced by the crack front deformations. For this, a suitable approach is the crack front perturbation method initiated by Rice (1985). It allows to update the stress intensity factors (SIFs) when the crack front of a planar crack is perturbed in its plane. This approach and its later extensions to more complex cases are recalled in this review. Applications concerning the deformation of the crack front when it propagates quasistatically in a homogeneous or heterogeneous media have been considered in brittle fracture, fatigue or subcritical propagation. The crack shapes corresponding to uniform SIF have been derived: cracks with straight or circular fronts, but also when bifurcations exist, with wavy front. For an initial straight crack, it has been shown that, in homogeneous media, in the quasistatic case, perturbations of all lengthscales progressively disappear unless disordered fracture properties yields Family and Vicsek (1985) roughness of the crack front. Extension of those perturbation approaches to more realistic geometries and to coalescence of cracks is also envisaged.  相似文献   

20.
In this paper, the dynamic crack-interface interactions and the related mechanics of crack penetration vs. branching at a weak interface are studied experimentally. The interface is oriented perpendicular to the incoming mode-I crack in an otherwise homogeneous bilayer. The focus of this investigation is on the effect of interface location and the associated crack-tip parameters within the bilayer on the mechanics of the ensuing fracture behavior based on the optical methodologies laid down in Ref. Sundaram and Tippur (2016). Time-resolved optical measurement of crack-tip deformations, velocity and stress intensity factor histories in different bilayer configurations is performed using Digital Gradient Sensing (DGS) technique in conjunction with high-speed photography. The results show that the crack path selection at the interface and subsequently the second layer are greatly affected by the location of the interface within the geometry. Using optically measured fracture parameters, the mechanics of crack penetration and branching are explained. Counter to the intuition, a dynamically growing mode-I approaching a weak interface at a lower velocity and stress intensity factor penetrates the interface whereas a higher velocity and stress intensity factor counterpart gets trapped by the interface producing branched daughter cracks until they kink out into the next layer. An interesting empirical observation based on measured crack-tip parameters for crack penetration and branching is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号