共查询到20条相似文献,搜索用时 15 毫秒
1.
Probability of failure (pf) of a structure is usually calculated for a specified set of statistical parameters (mean, standard deviation, and probability distribution) that characterize random variables. This approach may not be efficient in cases where one would like to know the effect of variations in statistical parameters on the probability of failure. A method based on generating and analyzing randomly selected statistical parameters is proposed. The method consists of generating databases of mean and coefficient of variation (COV = mean/standard deviation) values of relevant fracture mechanics variables through a random process. The method was applied to surface cracks in a flat wide plate loaded under elastic conditions. Probability of failure was calculated for each database record using the first-order reliability method (FORM). Multiple linear regression analyses of the database records were performed with pf as dependent variable and statistical parameters as independent variables. The predicted pf values were in very good agreement with the directly calculated pf values for the specified variations of statistical parameters (±10%, ±15%, and ±20%), except those for fracture toughness and tensile stress, where variations should be limited to ±10% and ±15% ranges. 相似文献
2.
The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is estab-lished to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM). The convergent stresses have good agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kan-torovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM. 相似文献
3.
Zheng-Hua Zhong 《Acta Mechanica Solida Sinica》1993,6(4):415-428
In this paper several geometrical relations of angular deformation and the analytical expressions of local stresses in spherical vessels are established with the analytical method. A concise and practical formula for calculating the stress concentration coefficient is derived, which shows that the stress concentration is related to angular deformation and increases with an increases of the square root of the ratio of radius to thickness. 相似文献
4.
Nian-Sheng Cheng B. Mutlu Sumer Jrgen Fredse 《International Journal of Heat and Fluid Flow》2003,24(6):816-824
The fluctuating bed shear stress has largely been investigated only for uniform channel flows and boundary layers. In practical engineering, the flow conditions are often modified due to the presence of various hydraulic structures. To what extent the modification affects the known characteristics of the bed shear stress is not clear. This study presents experimental results of the bed shear stress fluctuations, which are obviously subjected to external turbulence generated by superimposing artificial structures in the open channel flows. The statistical analysis of the measurements shows that the probability density function of the bed shear stress can be described by the lognormal function. Some associated relations concerning higher-order moments, skewness and kurtosis, which are derived from the lognormal function, are further compared with the experimental data. Physical implication of the skewed probability density distribution is finally discussed. 相似文献
5.
The originally developed reflection method of caustics is presented for application to cracks in mechanically anisotropic materials such as fiber-reinforced composites. The derived solutions for the combination of crack-opening modes I and II show that the size of the dark spot depends on the load intensity, whereas its shape depends strongly on the mechanical properties of the material, the orientation of the crack tip and the mixed-mode mixture. The evaluation of optical effects is possible using the diameter-measuring method or the advanced multipoint overdeterministic data reduction method. To find the exact position of caustics, the experimental images are analyzed by the simple boundary value method and a more sophisticated differential method, which is accomplished by shifting the real image onto the gradient image. The standard experimental testing procedure is performed for cracks oriented 0 deg, 45 deg and 90 deg to the material axes in carbon-fiber-reinforced polymer composites. 相似文献
6.
P. Ganguly 《Journal of the mechanics and physics of solids》2004,52(6):1355-1377
The state of stress in and around reinforcements governs a number of physical processes in composite (multi-phase) materials, including the initiation of damage by either reinforcement cracking or interfacial decohesion. The stresses in the reinforcements have been observed to depend on the spatial distribution of the reinforcements, although the exact correlation is unclear. The present work determines the reinforcement stress for different reinforcement arrangements, ranging from a linear array of three uniformly spaced particles, to random and clustered microstructures. The stress calculations for elastic matrices were undertaken using a computationally efficient iterative technique. The technique was validated by comparing the results to finite element models, and the range of validity was determined. For the three-particle arrangements, the maximum reinforcement stress was observed when the particles were close to each other along the line of loading (a vertical arrangement). On the other hand, when the particle arrangement made a large angle with the loading direction, the reinforcement stress was low. Similar observations were recorded for the random and clustered arrangements where the location of the maximum reinforcement stress coincided with a vertical arrangement. The present work also develops a scheme for determining ‘representative volume elements’ for composite micromechanical models, based on the length scales of stress field interactions. These observations can be used to rationalize damage evolution mechanisms in commercial composites, and aid the development of physically based failure models for such materials. 相似文献
7.
金属材料脆性断裂机理的实验研究 总被引:1,自引:0,他引:1
材料的脆性断裂有许多准则和模型,但对脆断机理和变化规律缺乏合理的描述,给工程应用带来不便。本文对典型脆性材料球墨铸铁、灰铸铁分别进行了拉扭双轴断裂实验和常规拉伸、扭转破坏实验;对韧性金属材料合金钢进行了单轴拉伸颈缩破坏实验。通过上述实验分析了脆性材料和韧性材料发生脆性断裂的机理特征并选择应力三维度作为应力状态参数描述危险点的应力状态,同时考察了脆性材料和韧性材料发生脆性断裂的主导因素。结果表明:韧性材料45#钢和14CrNiMoV合金钢在颈缩断面心部应力三维度值较大时发生脆性拉断,而在颈缩断面边缘处应力三维度值较小时发生剪断;脆性材料球墨铸铁在应力三维度值为0.0~0.33之间变化时均发生脆性断裂;灰铸铁在应力三维度值大于0.0时发生脆性拉断,而在应力三维度值小于0.0时发生剪断。因此可以认为,材料的细观组织结构和危险点应力状态是影响断裂机理及变化规律的主要因素。对于同种材料,随着应力三维度代数值从小向大变化材料的断裂机制由塑性剪切断裂逐渐转变为脆性断裂。本文通过对几种材料的脆性断裂危险点和断裂方向的研究给出了脆断宏观破坏条件。 相似文献
8.
H.L. Yu 《Theoretical and Applied Fracture Mechanics》2010,54(1):54-62
Nonlinear dynamic finite element analysis (FEA) is conducted to simulate the fracture of unnotched Charpy specimens of steel under pendulum impact loading by a dedicated, oversized and nonstandard Bulk Fracture Charpy Machine (BFCM). The impact energy needed to fracture an unnotched Charpy specimen in a BFCM test can be two orders of magnitude higher than the typical impact energy of a Charpy V-notch specimen. To predict material failure, a phenomenological, stress triaxiality dependent fracture initiation criterion and a fracture evolution law in the form of strain softening are incorporated in the constitutive relations. The BFCM impact energy results obtained from the FEA simulations compare favorably with the corresponding experimental data. In particular, the FEA predicts accurately the correlations of the BFCM impact energy with such factors as specimen geometry, impactor tup width and material type. The analyses show that a specimen’s progressive deterioration through the thickness dimension displays a range of shear to ductile fracture modes, demonstrating the necessity of applying a stress state dependent fracture initiation criterion. Modeling the strain softening behavior helps to capture the residual load carrying capability of a ductile metal or alloy beyond the onset of damage. The total impact energy can be significantly under predicted if a softening branch is not included in the stress-strain curve. This research supports a study of the puncture failure of railroad tank cars under dynamic impact loading. Applications of the presented fracture model in failure analyses of other structures are further discussed. 相似文献
9.
A photoelastic study was conducted to examine the stress fields in the cutting process of fiber-reinforced plastics (FRPs). Force measurements were made and used in the analysis of the stress fields. Machined surfaces of workpieces with fibers oriented away from the cutting direction showed that the fibers were machined by shearing and tensile fracture; and when fibers were inclined towards the cutting tool, the fibers failed by shearing and bending. In addition, fiber-matrix debonding was observed to be maximum for fibers oriented at 45 deg towards the tool's path. Fiber orientation was shown to have an influence on the machining forces and stresses.Paper was presented at the 1994 SEM Spring Conference held in Baltimore, MD on June 6–9. 相似文献
10.
P. Novak B.P. Somerday R.O. Ritchie 《Journal of the mechanics and physics of solids》2010,58(2):206-226
Intergranular cracking associated with hydrogen embrittlement represents a particularly severe degradation mechanism in metallic structures which can lead to sudden and unexpected catastrophic fractures. As a basis for a strategy for the prognosis of such failures, here we present a comprehensive physical-based statistical micro-mechanical model of such embrittlement which we use to quantitatively predict the degradation in fracture strength of a high-strength steel with increasing hydrogen concentration, with the predictions verified by experiment. The mechanistic role of dissolved hydrogen is identified by the transition to a locally stress-controlled fracture, which is modeled as being initiated by a dislocation pile-up against a grain-boundary carbide which in turn leads to interface decohesion and intergranular fracture. Akin to cleavage fracture in steel, the “strength” of these carbides is modeled using weakest-link statistics. We associate the dominant role of hydrogen with trapping at dislocations; this trapped hydrogen reduces the stress that impedes dislocation motion and also lowers the reversible work of decohesion at the tip of dislocation pile-up at the carbide/matrix interface. Mechanistically, the model advocates the synergistic action of both the hydrogen-enhanced local plasticity and decohesion mechanisms in dictating failure. 相似文献
11.
The present paper is part of a research program on two-phase flows and heat transfer studies in tube bundles. An experimental study was carried out to analyse the void fraction for vertical two-phase flows. Boiling across a horizontal tube bundle for three hydrocarbons (n-pentane, propane and iso-butane) under saturated conditions is investigated. The experiments were performed on a tube bundle with 45 plain copper tubes of 19.05 mm outside diameter in a staggered configuration with a pitch to diameter ratio of 1.33. An optical probe has been developed to determine the local void fraction at the minimum cross section between the tubes. 相似文献
12.
The boundary value problem of elastostatics in terms of six components of the stress consists of nine equations and three
boundary conditions. In this paper, we distinguished between the possible cases and impossible cases, i.e., the problem is
or is not equivalent to a boundary value problem of six equations and six boundary conditions. 相似文献
13.
The constraint of a thin silver interlayer is used to create high triaxial stresses to evaluate the applicability of theoretical models for ductile fracture. Rice and Tracey's model for cavity expansion under high triaxial states of stress and Huanget al.'s model for cavity instability were considered. The experimentally determined
m
/
y
values suggest that further investigation of the Huanget al. theory is warranted. Microstructural analysis revealed that multiple cavities were initially present in the silver interlayers, and the number and size of the cavities increased as failure was approached. Finite element analysis and experimental results showed excellent agreement in a computational determination of cavity instability. Thus, it appears that ductile fracture in constrained thin interlayers can be explained with unstable cavity growth. 相似文献
14.
Jun Zhou Xiaosheng Gao James C. Sobotka Bryan A. Webler Brian V. Cockeram 《International Journal of Solids and Structures》2014
One of the major drawbacks of the Gurson-type of porous plasticity models is the inability of these models to predict material failure under low stress triaxiality, shear dominated conditions. This study addresses this issue by combining the damage mechanics concept with the porous plasticity model that accounts for void nucleation, growth and coalescence. In particular, the widely adopted Gurson–Tvergaard–Needleman (GTN) model is extended by coupling two damage parameters, representing the volumetric damage (void volume fraction) and the shear damage, respectively, into the yield function and flow potential. The effectiveness of the new model is illustrated through a series of numerical tests comparing its performance with existing models. The current model not only is capable of predicting damage and fracture under low (even negative) triaxiality conditions but also suppresses spurious damage that has been shown to develop in earlier modifications of the GTN model for moderate to high triaxiality regimes. Finally the modified GTN model is applied to predict the ductile fracture behavior of a beta-treated Zircaloy-4 by coupling the proposed damage modeling framework with a recently developed J2–J3 plasticity model for the matrix material. Model parameters are calibrated using experimental data, and the calibrated model predicts failure initiation and propagation in various specimens experiencing a wide range of triaxiality and Lode parameter combinations. 相似文献
15.
Fracture toughness of metals depends strongly on the state of stress near the crack tip. The existing standards (like R-6, SINTAP) are being modified to account for the influence of stress triaxiality in the flaw assessment procedures. These modifications are based on the ability of so-called ‘constraint parameters’ to describe near tip stresses. Crack tip stresses in homogeneous fracture specimens are successfully described in terms of two parameters like J–Q or J–T. For fracture specimens having a weld center crack, strength mismatch ratio between base and weld material and weld width are the additional variables, along with the magnitude of applied loading, type of loading, and geometry of specimen that affect the crack tip stresses. In this work, a novel three-parameter scheme was proposed to estimate the crack tip opening stress accounting for the above-mentioned variables. The first and second parameters represent the crack tip opening stress in a homogeneous fracture specimen under small-scale yielding and are well known. The third parameter accounts for the effect of constraint developed due to weld strength mismatch. It comprises of weld strength mismatch ratio (M, i.e. ratio of yield strength of weld material to that of base material), and a plastic interaction factor (Ip) that scales the size of the plastic zone with the width of the weld material. The plastic interaction factor represents the degree of influence of weld strength mismatch on crack tip constraint for a given mismatch ratio. The proposed scheme was validated with detailed FE analysis using the Modified Boundary Layer formulation. 相似文献
16.
The predictive capabilities of the shear-modified Gurson model [Nielsen and Tvergaard, Eng. Fract. Mech. 77, 2010] and the Modified Mohr-Coulomb (MMC) fracture model [Bai and Wierzbicki, Int. J. Fract. 161, 2010] are evaluated. Both phenomenological fracture models are physics-inspired and take the effect of the first and third stress tensor invariants into account in predicting the onset of ductile fracture. The MMC model is based on the assumption that the initiation of fracture is determined by a critical stress state, while the shear-modified Gurson model assumes void growth as the governing mechanism. Fracture experiments on TRIP-assisted steel sheets covering a wide range of stress states (from shear to equibiaxial tension) are used to calibrate and validate these models. The model accuracy is quantified based on the predictions of the displacement to fracture for experiments which have not been used for calibration. It is found that the MMC model predictions agree well with all experiments (less than 4% error), while less accurate predictions are observed for the shear-modified Gurson model. A comparison of plots of the strain to fracture as a function of the stress triaxiality and the normalized third invariant reveals significant differences between the two models except within the vicinity of stress states that have been used for calibration. 相似文献
17.
Ameer Hassan 《Nonlinear dynamics》1996,10(2):105-133
Periodic response of nonlinear oscillators is usually determined by approximate methods. In the "steady state" type methods, first an approximate solution for the steady state periodic response is determined, and then the local stability of this solution is determined by analyzing the equation of motion linearized about this predicted "solution". An exact stability analysis of this linear variational equation can provide erroneous stability type information about the approximate solutions. It is shown that a consistent stability type information about these solutions can be obtained only when the linearized variational equation is analyzed by approximate methods, and the level of accuracy of this analysis is consistent with that of the approximate solutions. It is demonstrated that these consistent stability results do not imply that the approximate solution is qualitatively correct. It is also shown that the difference between an approximate and the next higher order stability analysis can be used to "guess" the role of higher harmonics in the periodic response. This trial and error procedure can be used to ensure the qualitatively correct and numerically accurate nature of the approximate solutions and the corresponding stability analysis. 相似文献
18.
滚压强化的残余应力的数值仿真及工艺分析 总被引:2,自引:0,他引:2
表面滚压强化,由于在表层引起加工硬化和残余压应力,可以十分有效地提高构件、零件疲劳强度,而滚压强化的有限元数值仿真,将成为分析优化滚压强化工艺的重要手段.本文建立了连续多、圈滚压工艺的有限元数值仿真模型,获得了比较合理的滚压变形与残余应力结果.在此基础上对滚压工艺做了进一步分析.结果表明,滚压变形的进给量太大.滚压的转速太快都容易造成工件表层残余应力分布的不均匀甚至形成残余拉应力;在滚压与未滚压的过度区域,从表面到心部的近1mm范围内,均未出现人们通常所担心的残余拉应力.这将在工程生产实践中,为滚压工艺制订提供重要的依据. 相似文献
19.
A comprehensive treatment of fracture of functionally graded materials (FGMs) is provided. It is assumed that the material
properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces.
By using a laminated composite plate model to simulate the material non-homogeneity, an algorithm for solving the system based
on Laplace transform and Fourier transform techniques is presented. Unlike earlier studies that considered certain assumed
property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with
arbitrarily varying material properties. Transient thermal stresses are presented.
Project supported by the National Natural Science Foundation of China (Nos 10102004 and 19902003). 相似文献
20.
In this paper, the digital photoelastic technique was employed to investigate the effect of different material combinations and different crack inclination angles on the stress-intensity factors (SIFs). To produce a true bimaterial plate, the two component materials were naturally adhered together by a special casting procedure. The experimental results show that dimensionless combined SIF increases with increasingG
1/G
2 (or crack inclination angles) for different crack inclination angles (orG
1/G
2's). 相似文献