首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3° and 90° with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and , and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths . On the other hand, for the films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and thick films sink-in occurs around the indenter, while pile-up occurs in the film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].  相似文献   

2.
A study of the indentation size effect (ISE) in aluminum and alpha brass is presented. The study employs rate effects to examine the fundamental mechanisms responsible for the ISE. These rate effects are characterized in terms of the rate sensitivity of the hardness, , where H is the hardness and is an effective strain rate in the plastic volume beneath the indenter. can be measured using indentation creep, load relaxation, or rate change experiments. The activation volume V∗, calculated based on which can traditionally be used to compare rate sensitivity data from a hardness test to conventional uniaxial testing, is calculated. Using materials with different stacking fault energy and specimens with different levels of work hardening, we demonstrate how increasing the dislocation density affects V∗; these effects may be taken as a kinetic signature of dislocation strengthening mechanisms. We noticed both H and exhibit an ISE. The course of V∗ vs. H as a result of the ISE is consistent with the course of testing specimens with different level of work hardening. This result was observed in both materials. This suggests that a dislocation mechanism is responsible for the ISE. When the results are fitted to a strain gradient plasticity model, the data at deep indents (microhardness and large nanoindentation) exhibit a straight-line behavior closely identical to literature data. However, for shallow indents (nanoindentation data), the slope of the line severely changes, decreasing by a factor of 10, resulting in a “bilinear behavior”.  相似文献   

3.
The present paper describes results of plate-impact pressure-shear friction experiments conducted to study time-resolved growth of molten metal films during dry metal-on-metal slip under extreme interfacial conditions. By employing tribo-pairs comprising hard tool-steel against relatively low melt-point metals such as 7075-T6 aluminum alloys, interfacial friction stress ranging from 100 to and slip speeds of approximately have been generated. These relatively high levels of friction stress combined with high slip-speeds generate conditions conducive for interfacial temperatures to approach the melting point of the lower melt point metal (Al alloy) comprising the tribo-pair.A Lagrangian finite element code is developed to understand the evolution of the thermo-mechanical fields and their relationship to the observed slip response. The code accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below the melting point the material is described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point a purely Newtonian fluid constitutive model is employed.The results of the hybrid experimental-computational study provides new insights into the thermoelastic-plastic interactions during high speed metal-on-metal slip under extreme interfacial conditions. During the early part of frictional slip the coefficient of kinetic friction is observed to decrease with increasing slip velocity. During the later part transition in interfacial slip occurs from dry metal-on-metal sliding to the formation of molten Al films at the tribo-pair interface. Under these conditions the interfacial resistance approaches the shear strength of the molten aluminum alloy under normal pressures of approximately 1- and shear strain rates of . The results of the study indicate that under these extreme conditions molten aluminum films maintain a shearing resistance as high as .Scanning electron microscopy of the slip surfaces reveal molten aluminum to be smeared on the tribo-pair interface. Knoop hardness measurements in 7075-T6 Al alloy at various depths from the slip interface indicate that the hardness increases approximately linearly with depth and reaches a plateau at approximately from the surface.  相似文献   

4.
The mechanical properties of interphase regions at bi-material interfaces can be quite different from the surrounding bulk materials. For composite materials, this interphase region is usually thin but plays an important role in their overall mechanical properties. Nanoindentation has become a commonly used experimental technique for measuring the mechanical properties of materials, especially when one of the dimensions is small. However, the extraction of reduced elastic modulus from the nanoindentation of thin films on substrates can pose challenges due to the influence of the substrate. In this study, the nanoindentation of thin films on substrates has been examined with a view to extracting the reduced modulus of thin polymer films.Thin films of (3-aminopropyl)triethoxysilane (C9H23NO3Si, γ-APS) were deposited on silicon. An interfacial force microscope (IFM) was used to indent the γ-APS films. The effect of the substrate was studied by considering two very different thicknesses ( and ). The nanoindentation data were analyzed via contact mechanics theories and a finite element analysis that incorporated surface interactions. The analyses showed that nanoindentation experiments can provide reliable values of film modulus when the film is very different from the substrate. It was found that the commonly used rule of thumb that the indentation depth should be less than 10% of the thickness did not eliminate substrate effects for a wide range of material combinations. Instead, it is proposed that the contact radius should be less than 10% of the thickness so that contact mechanics theories for monolithic materials can be used without considering the presence of the substrate. The modulus of γ-APS polymer films and the surface energy between the tungsten tip of the IFM and γ-APS films were extracted and were related to their cure. A completely cured thick γ-APS film had a reduced modulus of . This value falls in the usual range for polymers due to the amorphous nature of the γ-APS films.  相似文献   

5.
In part I of this paper (Cao and Lu, J. Mech. Phys. Solids, in press), a closed-form expression of the size-dependent sharp indentation loading curve has been proposed. In this second part, which concerns the direct application of the analytical model, a reverse algorithm has first been established to extract the plastic properties of metallic materials on a small scale where the size effect caused by geometrically necessary dislocations is significant. Second, from the viewpoint of the mathematical theory of inverse problems, the properties of the present inverse problem i.e. the existence, uniqueness and stability of the solution, have been investigated systematically. The results have identified the extent to which the plastic properties of ductile materials can be determined effectively using the present method. Third, experimental verifications of the reverse algorithm using a standard Berkovich indenter have been carried out for 316 stainless steel and pure titanium, respectively. The results show that, by taking a maximum indentation depth of 1.5 and , respectively for the two materials, a good engineering estimation of the representative stresses, σ0.033, in the absence of a strain gradient can be made using the present method, which can be used in conjunction with the representative stress corresponding to another indenter with a different tip apex angle to determine the plastic properties of metallic materials, i.e. the yield strength σy and the strain hardening exponent n. The material length scale can also be identified by using the present algorithm. Experimental results show that it has the correct order of magnitude, but is more sensitive to data errors than the identified representative stress.  相似文献   

6.
Prior experiments have revealed exceptionally high values of the work of fracture (0.4-) in carbon/epoxy 3D interlock woven composites. Detailed destructive examination of specimens suggested that much of the work of fracture arose when the specimens were strained well beyond the failure of individual tows yet still carried loads . A mechanism of lockup amongst broken tows sliding across the final tensile fracture surface was suggested as the means by which high loads could still be transferred after tow failure. In this paper, the roles of weave architecture and the distribution of flaws in the mechanics of tow lockup are investigated by Monte Carlo simulations using the so-called Binary Model. The Binary Model was introduced previously as a finite element formulation specialised to the problem of simulating relatively large, three-dimensional segments of textile composites, without any assumption of periodicity or other symmetry, while preserving the architecture and topology of the tow arrangement. The simulations succeed in reproducing all qualitative aspects of measured stress-strain curves. They reveal that lockup can indeed account for high loads being sustained beyond tow failure, provided flaws in tows have certain spatial distributions. The importance of the interlock architecture in enhancing friction by holding asperities on sliding fibre tows into firm contact is highlighted.  相似文献   

7.
We present atomistic simulations of the tensile and compressive loading of single crystal face-centered cubic (FCC) nanowires with and orientations to study the propensity of the nanowires to deform via twinning or slip. By studying the deformation characteristics of three FCC materials with disparate stacking fault energies (gold, copper and nickel), we find that the deformation mechanisms in the nanowires are a function of the intrinsic material properties, applied stress state, axial crystallographic orientation and exposed transverse surfaces. The key finding of this work is the first order effect that side surface orientation has on the operant mode of inelastic deformation in both and nanowires. Comparisons to expected deformation modes, as calculated using crystallographic Schmid factors for tension and compression, are provided to illustrate how transverse surface orientations can directly alter the deformation mechanisms in materials with nanometer scale dimensions.  相似文献   

8.
Recent progress in instrumented nanoindentation makes it possible today to test in situ phase properties and structures of porous materials that cannot be recapitulated ex situ in bulk form. But it requires a rigorous indentation analysis to translate indentation data into meaningful mechanical properties. This paper reports the development and implementation of a multi-scale indentation analysis based on limit analysis, for the assessment of strength properties of cohesive-frictional porous materials from hardness measurements. Based on the separation-of-scale condition, we implement an elliptical strength criterion which results from the nonlinear homogenization of the strength properties of the constituents (cohesion and friction), the porosity and the microstructure, into a computational yield design approach to indentation analysis. We identify the resulting upper bound problem as a second-order conical optimization problem, for which advanced optimization algorithms became recently available. The upper bound yield design solutions are benchmarked against solutions from comprehensive elastoplastic contact mechanics finite element solutions and lower bound solutions. Furthermore, from a detailed parameter study based on intensive computational simulations, we identify characteristic hardness-packing density scaling relations for cohesive-frictional porous materials. These scaling relations which are developed for two pore-morphologies, a matrix-pore morphology and a polycrystal (perfect disordered) morphology, are most suitable for the reverse analysis of the strength parameters of cohesive-frictional solids from indentation hardness measurements.  相似文献   

9.
The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics and dislocation dynamics simulations. Molecular dynamics simulations show that the orientation of single crystal metal wires controls the mechanisms of plastic deformation. For wires oriented along , dislocations nucleate along the axis of the wire, making the deformation homogeneous. These wires also maintain most of their strength after yield. In contrast, wires oriented along and directions deform through the formation of twist boundaries and tend not to recover when high angle twist boundaries are formed. The stability of the dislocation structures observed in molecular dynamics simulations are investigated using analytical and dislocation dynamics models.  相似文献   

10.
11.
Wave propagation in viscoelastic rods is encountered in many applications including studies of impact and fracture under high strain rates and characterization of the dynamic behavior of viscoelastic materials. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the rod is of the same order as the wavelength. In this work, we simplify the Pochhammer frequency equation for low and intermediate loss viscoelastic materials and formulate corrections for geometric dispersion for both the phase velocity and attenuation. The formulation is then experimentally verified with measurements of the phase velocity and attenuation in commercial polymethylmethacrylate rods that are 12 and in diameter. Without correcting for geometric dispersion, the usable frequency range for determining the phase velocity and attenuation for the rod is about , and about for the rod. Using the correction procedure developed here, it was possible to accurately determine the phase velocity and attenuation up to frequencies exceeding for the rod and for the rod. These corrections are applicable to many polymers and other viscoelastic materials. From thereon, the viscoelastic properties of the material can be determined over a wide range of frequencies.  相似文献   

12.
Interface delamination during indentation of micron-scale ceramic coatings on metal substrates is modeled using discrete dislocation (DD) plasticity to elucidate the relationships between delamination, substrate plasticity, interface adhesion, elastic mismatch, and film thickness. In the DD method, plasticity in the metal substrate occurs directly via the motion of dislocations, which are governed by a set of physically based constitutive rules for nucleation, motion and annihilation. A cohesive law with peak stress characterizes the traction-separation response of the metal/ceramic interface. The indenter is a rigid flat punch and plane strain deformation is assumed. A continuum plasticity model of the same problem is studied for comparison. For low interface strengths (e.g. ), DD and continuum plasticity results are quantitatively similar, with delamination being nearly independent of interface strength, and easier for thinner, lower-modulus films. For higher interface strengths (), continuum plasticity predicts no delamination up to very high loads while the DD model shows a smooth increase in the critical indentation force for delamination with increasing interface strength. Tensile delamination in the DD model is driven by the accumulation of dislocations, and their associated high stresses, at the interface upon unloading. The DD model is thus capable of predicting the nucleation of cracks, and its dependence on material parameters, in realms of realistic constitutive behavior and/or small length scales where conventional continuum plasticity fails.  相似文献   

13.
14.
We employ a kinetic Monte Carlo algorithm to simulate the motion of -oriented screw dislocation on a -slip plane in body centered cubic Ta and Ta-based alloys. The dislocation moves by the kink model: double kink nucleation, kink migration and kink-kink annihilation. Rates of these unit processes are parameterized based upon existing first principles data. Both short-range (solute-dislocation core) and long-range (elastic misfit) interactions between the dislocation and solute are considered in the simulations. Simulations are performed to determine dislocation velocity as a function of stress, temperature, solute concentration, solute misfit and solute-core interaction strength. The dislocation velocity is shown to be controlled by the rate of nucleation of double kinks and the dependence of the double kink nucleation rate on stress and temperature are consistent with existing analytical predictions. In alloys, dislocation velocity depends on both the short- and long-range solute dislocation interactions as well as on the solute concentration. The short-range solute-core interactions are shown to dominate the effects of alloying on dislocation mobility. The present simulation method provides the critical link between atomistic calculations of fundamental dislocation and solute properties and large scale dislocation dynamics that typically employ empirical equations of motion.  相似文献   

15.
采用分子动力学与有限元耦合的多尺度方法,求解二维刚性圆柱表面压头与弹性平面的微/纳尺度粘着滑动接触问题,通过与全分子动力学模拟结果的比较验证了多尺度方法的有效性。对压头半径、滑动速度、下压深度以及是否考虑粘着效应等对滑动接触性能的影响进行了全面研究,通过不同条件下摩擦力及接触力分布的比较,揭示了上述各参数对粘着滑动接触...  相似文献   

16.
17.
18.
Constitutive laws are critical in the investigation of mechanical behavior of single crystal or polycrystalline materials in applications spanning from microscale to macroscale. In this investigation, a combined FEM simulation and experimental nanoindentation approach was taken to determine the mechanical behavior of single crystal copper incorporating the mesoplastic constitutive model. This model was implemented in a user-defined subroutine in 3D ABAQUS/Explicit code. Nanoindentation was modeled using the multiscale modeling technique involving mesoplasticity and elasticity, i.e., mesoplastic constitutive model was used near the local nanoindentation region (where the dislocations are generated) while elastic constitutive model was used in rest of the region in the workmaterial. The meso-mechanical behavior of the crystalline structure and the effect of the mesoplastic parameters on the nanoindentation load-displacement relationships were investigated in the FEM analysis. Nanoindentation tests were conducted on single crystal copper to determine load-displacement relationships. Appropriate mesoplastic parameters were determined by fitting the simulated load-displacement curves to the experimental data. The mesoplastic model, with appropriate parameters, was then used to determine the stress-strain relationship of a single crystal copper at meso-scale. The effect of indenter radius (3.4-) on material hardness under nanoindentation was simulated and found to match the experimental data for several indenter radii (3.4, 10 and ). A comparison of the topographies of nanoindentation impressions in the experiments with FEM results showed a reasonably good agreement.  相似文献   

19.
20.
We derive solutions of the Kirchhoff equations for a knot tied on an infinitely long elastic rod subjected to combined tension and twist, and held at both endpoints at infinity. We consider the case of simple (trefoil) and double (cinquefoil) knots; other knot topologies can be investigated similarly. The rod model is based on Hookean elasticity but is geometrically nonlinear. The problem is formulated as a nonlinear self-contact problem with unknown contact regions. It is solved by means of matched asymptotic expansions in the limit of a loose knot. We obtain a family of equilibrium solutions depending on a single loading parameter (proportional to applied twisting moment divided by square root of pulling force), which are asymptotically valid in the limit of a loose knot, ε→0. Without any a priori assumption, we derive the topology of the contact set, which consists of an interval of contact flanked by two isolated points of contacts. We study the influence of the applied twist on the equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号