首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generalized elastoplastic constitutive equation for soils is proposed based on the subloading surface model extended so as to describe the dependence of both the magnitude and the direction of inelastic stretching on the stress rate tangential to the subloading surface [Int J Plasticity 17 (2001) 117]. It would be applicable to the analysis of deformation of soils in both normal-yield and subyield states for not only lower but also higher stress ratio than that in the critical state. Then, the shear band formation in the rectangular specimen subjected to the biaxial compression under the undrained plane strain condition is analyzed by the generalized equation, and thus the condition for shear band formation and the shear band inclination are discussed in relation to material properties and the state of stress, i.e. the stress-ratio and the normal-yield ratio. These results reveal that the tangential stretching term makes easy to fulfill the necessary condition of shear band formation for not only normal-yield but also subyield states, and further the formation is affected by the material parameter prescribing the approaching degree of the stress to the normal-yield state.  相似文献   

2.
The diffuse mode bifurcation of elastoplastic solids at finite strain is investigated. The multiplicative decomposition of deformation gradient and the hyperelasto-plastic constitutive relationship are adapted to the numerical bifurcation analysis of the elastoplastic solids. First, bifurcation analyses of rectangular plane strain specimens subjected to uniaxial compression are conducted. The onset of the diffuse mode bifurcations from a homogeneous state is detected; moreover, the post-bifurcation states for these modes are traced to arrive at localization to narrow band zones, which look like shear bands. The occurrence of diffuse mode bifurcation, followed by localization, is advanced as a possible mechanism to create complex deformation and localization patterns, such as shear bands. These computational diffuse modes and localization zones are shown to be in good agreement with the associated experimental ones observed for sand specimens to ensure the validity of this mechanism. Next, the degradation of horizontal sway stiffness of a rectangular specimen due to plane strain uniaxial compression is pointed out as a cause of the bifurcation of the first antisymmetric diffuse mode, which triggers the tilting of the specimen. Last, circular and punching failures of a footing on a foundation are simulated.  相似文献   

3.
Diffuse mode bifurcation of soil under plane-strain compression test is shown, by means of an image analysis based on group-theoretic bifurcation theory, to trigger convection-like shear and to precede shear band formation. First digital photos of Toyoura sand specimens are processed by PIV (particle image velocimetry) to gather digitized images of deformation. Next bifurcation from a uniform state is detected by expanding these images into the double Fourier series and finding a predominant harmonic diffuse bifurcation mode based on that theory. This harmonic bifurcation mode, which is the mixture of a few harmonic functions, expresses complex convection-like shear. Last bifurcation from a non-uniform state is detected by decomposing each image into a few images with different symmetries to extract non-harmonic diffuse bifurcation modes. Diffuse modes of bifurcation, which hitherto were hidden behind predominant uniform compressive deformation, have thus been made transparent by virtue of the group-theoretic image analysis proposed. A possible course of deformation suggested herein is the evolution of diffuse mode bifurcation with a convection-like bifurcation mode breaking uniformity and symmetry, followed by the formation of shear bands through localization.  相似文献   

4.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

5.
The bifurcations of a rectangular block subject to plane strain tension or compression are investigated. The block material is taken to be incompressible and is characterized by an incrementally linear constitutive law for which “normality” does not necessarily hold. The consequences of non-normality regarding bifurcation are given primary emphasis here. The characteristic regimes of the governing equations (elliptic, parabolic and hyperbolic) are detennined. In each of these regimes both symmetric and antisymmetric diffuse bifurcation modes are available. Additionally, in the hyperbolic and parabolic regimes, bifurcation into a localized shear band mode is also possible. Particular attention is given to the limiting cases of long wavelength and soon wavelength diffuse bifurcation modes. The range of parameter values is identified for which bifurcation into some localized mode may precede bifurcation into a long wavelength diffuse mode. Some difficulties associated with employing a linear incremental solid in a bifurcation analysis, when primary interest is in the bifurcation of an underlying elastic-plastic solid, are also discussed.  相似文献   

6.
In this paper, we establish a homogenization framework to analyze the microscopic symmetric bifurcation buckling of cellular solids subjected to macroscopically uniform compression. To this end, describing the principle of virtual work for infinite periodic materials in the updated Lagrangian form, we build a homogenization theory of finite deformation, which satisfies the principle of material objectivity. Then, we state a postulate that at the onset of microscopic symmetric bifurcation, microscopic velocity becomes spontaneous, yet changing the sign of such spontaneous velocity has no influence on the variation in macroscopic states. By applying this postulate to the homogenization theory, we derive the conditions to be satisfied at the onset of microscopic symmetric bifurcation. The resulting conditions are verified by analyzing numerically the in-plane biaxial buckling of an elastic hexagonal honeycomb. It is thus shown that three kinds of experimentally observed buckling modes of honeycombs i.e., uniaxial, biaxial and flower-like modes, are attained and classified as microscopic symmetric bifurcation. It is also shown that the multiplicity of bifurcation gives rise to the complex cell-patterns in the biaxial and flower-like modes.  相似文献   

7.
Influence of void nucleation on ductile shear fracture at a free surface   总被引:7,自引:0,他引:7  
An approximate continuum model of a ductile, porous material is used to study the influence of the nucleation and growth of micro-voids on the formation of shear bands and the occurrence of surface shear fracture in a solid subject to plane strain tension. Bifurcation into diffuse modes is analysed for a plane strain tensile specimen described by these constitutive relations, which account for a considerable plastic dilatancy due to void growth and for the possibility of non-normality of the plastic flow law. In particular, bifurcation into surface wave modes and the possible influence of such modes triggering shear bands is investigated. For solids with initial imperfactions such as a surface undulation, a local material inhomogeneity on an inclusion colony, the inception and growth of plastic flow localization is analysed numerically. Both the formation of void-sheets and the final growth of cracks in the shear bands is described numerically. Some special features of shear band development in the solid obeying non-normality are studied by a simple model problem.  相似文献   

8.
The formation of shear bands in plane sheet is studied, both analytically and experimentally, to enhance the fundamental understanding of this phenomenon and to develop a capability for predicting material failure. The evolution of voids is measured and its interaction with the process of shear banding is examined. The evolving dilatancy in plasticity is shown to have a vital role in analysing the shear-band type of bifurcation, and tremendously reduces the theoretical value of critical stresses. The analyses, referring to both localized and diffuse modes of bifurcation, fairly explain the corresponding observations obtained through testing a dual-phase steel sheet and provide a justification of the constitutive model used.  相似文献   

9.
We relate the micromechanics of vortex evolution to that of force chain buckling and, on this basis, formulate the conditions for strain localization in a continuum model of dense granular media. Using the traditional bifurcation analysis of shear bands, we show that kinematic vortex fields are in fact solutions to the boundary value problem satisfying null boundary conditions. To establish an empirical basis for our study, we first develop a method to identify the location of the core and boundary of each vortex from a given displacement field in two dimensions. We then employ this method to characterize the residual deformation field (i.e., the deviation of particle motions from the continuum deformation) in a physical experiment and a discrete element simulation of dense granular samples submitted to biaxial compression. Vortices in the failure regime are essentially confined to the shear band. Primary vortices, the clear majority, rotate in the same direction as the shear band; secondary vortices, the so-called wakes, rotate in the opposite direction. Primary vortices align in spatial succession along the central axis of the band; wakes form next to the band boundaries, in between and beside two adjacent primary vortices. Force chain buckling, the governing mechanism for shear bands, is responsible for vortex formation in the failure regime. Vortex dynamics are consistent with stick-slip dynamics. From quiescent conditions of jamming or stick, vortical motions arise from force chain buckling and associated relative particle rotations and sliding; these in turn precipitate intermittent periods of unjamming or slip, evident in the attendant drops in stress ratio and bursts in both kinetic energy and local nonaffine deformation. A kinematic vortex field inside shear bands is proposed that is consistent with the equations of continuum mechanics and the underlying instability of force chain buckling: such a field is periodic with a repeating unit cell comprising a primary vortex at the center of the band, with two trailing wakes close next to the band boundaries.  相似文献   

10.
在已论证过的应变软化效应对形成剪切带状分叉的作用的基础上,本文研究了:(1)什么受力情况最易激发剪切带(2)采用什么力学模型和参数可以模拟材料中的曲线型带状分叉。  相似文献   

11.
The present paper briefly reviews analytical studies of the evolution of thermoplastic shear band, i.e. emergence from uniform deformation, post-instability growth and late stage behaviour. The case studied is the simple shear of temperature and rate-dependent materials with heat transfer. Uniform mode exists before a critical state, if no heat flows out of testpiece. Upon reaching the critical state, bifurcation appears as a result of disturbances, which leads to instability and the formation of narrow shear band. Initially, the band, due to temperature disturbance, can shrink with increasing temperature and strain rate owing to unsteady flow. Then heat conduction dominates and causes the shear band to expand. The postmortem appearance of thermo-plastic shear band manifests itself as balance of plastic work rate and heat diffusion. Melting may also take place within the band.  相似文献   

12.
13.
Shear band localization is investigated by a strain-gradient-enhanced damage model for quasi-brittle geomaterials. This model introduces the strain gradients and their higher-order conjugate stresses into the framework of continuum damage mechanics. The influence of the strain gradients on the constitutive behaviour is taken into account through a generalized damage evolutionary law. A weak-form variational principle is employed to address the additional boundary conditions introduced by the incorporation of the strain gradients and the conjugate higher-order stresses. Damage localization under simple shear condition is analytically investigated by using the theory of discontinuous bifurcation and the concept of the second-order characteristic surface. Analytical solutions for the distributions of strain rates and strain gradient rates, as well as the band width of localised damage are found. Numerical analysis demonstrates the shear band width is proportionally related to the internal length scale through a coefficient function of Poisson’s ratio and a parameter representing the shape of uniaxial stress–strain curve. It is also shown that the obtained distributions of strains and strain gradients are well in accordance with the underlying assumptions for the second-order discontinuous shear band boundary and the weak discontinuous bifurcation theory.  相似文献   

14.
Bifurcations of circular cylindrical elastic tubes subjected to inflation combined with axial loading are analysed. Membrane tubes are considered in detail as a background to the more difficult analysis of thickwalled tubes described in the companion paper (Part II). Our results for membranes reinforce and extend those given by R.T. Shield and his co-workers.Two modes of bifurcation are investigated: firstly, a bulging (axisyrmmetric) mode; secondly, a prismatic mode in which the cross-section of the tube becomes non-circular. Necessary and sufficient conditions for the existence of modes of either type are given in respect of an arbitrary (incompressible isotropic) form of elastic strain-energy function. For a closed tube with a fixed axial loading many features of the results have close parallels with recent findings by D.M. Haughton and R.W. Ogden for spherical membranes. On the other hand, some results for tubes with fixed ends have no such parallel. In particular, bifurcation may, under certain conditions, occur before the inflating pressure reaches a maximum. A combination of the two modes is interpreted in terms of bending for a tube under axial compression, and the relative importance of the bending and bulging modes is discussed in relation to the length to radius ratio of the tube. The analytical results are illustrated for specific forms of strain-energy function. Corresponding analysis is given for thick-walled tubes in Part II.  相似文献   

15.
Elastic buckling of layered/fibre reinforced composites is investigated. Assuming the existence of both shear and transverse modes of failure, the fibre is analysed as a layer embedded in a matrix. Interacting stresses, acting at the interfaces are determined from an exact derived stress field in the matrix. It is shown that buckling can occur only in the shear buckling mode and that the transverse buckling mode is spurious. As opposed to the well known Rosen shear buckling mode solution (predicated on an infinite buckling wavelength), shear buckling is shown to exist under two régimes: buckling of dilute composites with finite wavelengths and buckling of non-dilute composites with infinite wavelengths. Based on the analysis, a model is constructed which defines the fibre concentration at which the transition between the two régimes occurs. The buckling strains are shown to be (approximately) constant for dilute composites and, in the case of very stiff fibres, to have realistic values compatible with elastic behaviour. For the case of non-dilute composites, the strains are found to be in agreement with those given by the Rosen shear buckling solution. Numerical results for the buckling strains and stresses are presented and compared with the Rosen solution. These reveal that the Rosen solution is valid only for the case of non-dilute composites. The investigation demonstrates that elastic buckling may be a dominant failure mechanism of composites consisting of very stiff fibres fabricated in the framework of nano-technology.  相似文献   

16.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   

17.
A phenomenological constitutive relation, for capturing the shear band formation in a rate-independent elastic-plastic material, is established. The model takes into account both the J2-isotropic flow and a threshold shear stress-based flow. The elastic-plastic constitutive tensor is expressed explicity in terms of elastic constants, the deviatoric stress tensor, the direction of the principal shear velocity-strain, and other material constants. This model particularly facilitates the resolution of the formation of the shear band even under material hardening conditions and does not demand an a priori knowledge of the orientation of the shear band. This is incorporated in an FEM, and the plane strain tensile test of Anand and Spitzig [1980] is numerically simulated. The computed results compare favorably with the experimental data. The shear band emerges more naturally as a solution to the boundary value problem, unlike the situations in solutions based on classical bifurcation methods. Nevertheless, the usefulness of the local instability condition (Ortiz et al. [1987]) is also demonstrated.  相似文献   

18.
The interface between soil and structure can be referred to as a soil-structure system, and its behavior plays an important role in many geotechnical engineering practices. In this study, results are presented from a series of monotonic direct shear tests performed on a sand-structure interface under constant normal stiffness using the discrete element method (DEM). Strain localization and dilatancy behavior of the interface is carefully examined at both macroscopic and microscopic scales. The effects of soil initial relative density and normal stress on the interface shear behavior are also investigated. The results show that a shear band progressively develops along the structural surface as shear displacement increases. At large shear displacement a unique relationship between stress ratio and void ratio is reached in the shear band for a certain normal stress, indicating that a critical state exists in the shear band. It is also found that the thickness and void ratio of the shear band at the critical state decreases with increasing normal stress. Comparison of the DEM simulation results with experimental results provides insight into the shear behavior of a sand-structure interface and offers a means for quantitative modeling of such interfaces based on the critical state soil mechanics.  相似文献   

19.
The first objective is to study the influence of the burial depth and of an imperfection, in the form of a tilt in the inclination of the otherwise straight, laminated beam, on the conditions for the initiation and the development of kink folds. The beam, typical of sedimentary rocks, is layered with weak interfaces between the competent beds, promoting the onset of kinking by their slip. The results are analytical and based on the upper bound approach of the classical limit analysis, referred to as the maximum strength theorem in the absence of any discussion of plasticity. The weak interface strength is described by the Coulomb criterion, whereas the bulk material is also cohesive and frictional but with an additional closure in the compressive stress domain to depict the action of compacting deformation mechanisms. The new twist to the methodology is to extend its application to the development of the failure mode beyond the onset, assuming that the structure finite response is well described by the least upper bound solution. The second objective is to compare in terms of upper bounds three different failure mechanisms which are the compaction band, the reverse fault and the kink fold. Their respective domain of dominance is constructed in failure-mechanism maps in the space spanned by the imperfection angle and the burial depth.Compaction bands are predicted at the deepest end of the beam and the reverse fault and the kink fold at the shallower end. These depth differences are resulting from the geometrical imperfection. It is found that the kink-band mode at its onset, with compaction band dominant conditions, resembles to a slip-enhanced compaction band due to the weak interface activation and the compaction along the two parallel hinges. This hybrid mode migrates suddenly through the competent beam from the deepest towards the shallowest region and develops as a kink fold, after a negligible amount of shortening. The kink fold development, beyond the onset, occurs in two phases, the first corresponding to the rotation of the kink band and the second, to its widening. The associated least upper bound is first decreasing during the development and then increasing, the minimum being controlled more by the increase in the potential energy of the system than by the most favorable orientation of the frictional weak interfaces. It is finally found that the continuous activation of slip over the weak interfaces and the widening of the kink band prevent the rotation of the kink towards the large angles which are necessary to induce its locking. It is proposed that the introduction of damage along the hinges could palliate these two effects and prompt the locking observed experimentally and in the field.  相似文献   

20.
孙红  赵锡宏 《力学季刊》2001,22(3):307-316
在软土各向异性弹塑性损伤模型的基础上,把小应变模型扩展到有限应变模型,推导出不排水平面应变条件下的剪切带形成条件,分析K0固结状态下各向异性损伤对剪切带形成的影响.以上海软土为例,分析临界状态参数β=0.9时,损伤变量D1,D2的不同组合的剪切角和简单剪切模量与有效平均主应力比(g/p')的关系曲线.计算结果表明,损伤变量越大,越接近不稳定状态,垂直方向损伤对剪切带的影响比水平方向的强烈. 特别指出无论土为横观各向同性损伤的情况,还是各向异性损伤的情况,在本文研究的条件下,不稳定状态(g/p'为最小值)相应两个剪切角约在50°和130°,这对研究弹塑性损伤对剪切带形成与变化有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号