首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Transition metal acetylides, MC2 (M=Fe, Co and Ni), exhibit ferromagnetic behavior of which TC is characteristic of their size and structure. CoC2 synthesized in anhydrous condition exhibited cubic structure with disordered C22- orientation. Once being exposed to water (or air), the particles behave ferromagnetically due to the lengthening of the Co–Co distance by the coordination of water molecules to Co2+ cations. Heating of these particles induces segregation of metallic cores with carbon mantles. Electron beam or 193 nm laser beam can produce nanoparticles with metallic cores covered with carbon mantles.  相似文献   

2.
Behavior of metal nanoparticles in the electron beam   总被引:1,自引:0,他引:1  
Fabrication and structural observation of In, Pd and Mo nanoparticles deposited on Si(110) substrates were performed in an ultrahigh vacuum field emission transmission electron microscope. In situ and/or dynamic observation of In nanoparticles showed fluctuation of their structures. The smaller particles of size of 3-5 nm showed frequent fluctuation, while the nanoparticles of more than 10 nm in size showed relatively slower fluctuation. The bigger nanoparticles showed coalescence with a weaker beam. Pd nanoparticles of size of 3-5 nm showed structural fluctuation after 10-30 s of electron beam irradiation. Stronger beam irradiation resulted in the dissipation of the nanoparticles probably due to diffusion. Mo nanoparticles of size of 3-5 nm never showed structural fluctuation. Intensive electron beam irradiation resulted in the dissipation of the particles. The difference in structural fluctuation depending on the metal and the beam intensity, and the peculiar coalescence of In nanoparticles are discussed qualitatively.  相似文献   

3.
The formation of periodic domain structures in stoichiometric lithium niobate crystals via direct surface irradiation using a controllable electron beam in a scanning electron microscope is studied. The periodic domain structures are fabricated at different microscope parameters (current, voltage, charge density) and different ways of charge implantation. The irradiation modes for the formation of uniform periodic domain structures are experimentally found. The use of optimal electron-beam parameters and ways of crystal surface irradiation make it possible to fabricate domain structures with a period of 6.9 μm in a crystal 0.5 mm thick. Domain structures of this kind can be used for optical wavelength conversion by quasi-phase-matching and second harmonic generation in lithium niobate.  相似文献   

4.
《Current Applied Physics》2018,18(3):335-339
It is demonstrated experimentally that graphene can form on the surface of an amorphous SiC film by irradiating electron beam (e-beam) at low acceleration voltage. As the electron irradiation fluency increases, the crystallinity and uniformity of graphene improve, which is confirmed by the changes of the measured Raman spectra and secondary electron microscopy images. Due to the shallow penetration depth of e-beam with low acceleration voltage, only the region near the surface of SiC film will be heated by the thermalization of irradiated electrons with multiple scattering processes. The thermalized electrons are expected to weaken the bond strength between Si and C atoms so that the thermal agitation required for triggering the sublimation of Si atoms decreases. With these assistances of irradiated electrons, it is considered that graphene can grow on the surface of SiC film at temperature reduced substantially in comparison with the conventional vacuum annealing process.  相似文献   

5.
6.
7.
Electron beam writing of regular domain structures in Z-cuts 0.75 mm thick of stoichiometric and close to stoichiometric LiNbO3 crystals has been carried out. Crystals have been grown by the Czochralski method from a melt with excess Li2O (58.6 mol %) and from a congruent-composition melt in the presence of 6 wt % K2O alkali solvent (flux). In both crystals, threshold charge doses required to form individual domains have been determined, and the optimal conditions of periodic structure patterning by sequential local irradiations have been found. Domain gratings of similar type (with periods of 6.5, 7, and 10 ??m) are formed in both types of stoichiometric crystals.  相似文献   

8.
The 200?kV focused electron beam in the convergent beam electron diffraction patterns mode in a transmission electron microscope (TEM) with field emission gun is able to drill holes in gold and silver decahedral nanoparticles. However, although they are done under the same circumstances, the holes are shapeless in the silver and faceted in gold nanoparticles. In addition to this, the holes are closed during their high-resolution TEM observation in both materials. To comment their differences, displacement energy considerations are taken into account as function of the sputtering energy in order to modify the displacement cross-section of the processes.  相似文献   

9.
电子辐照下聚合物介质深层充电现象研究   总被引:1,自引:0,他引:1       下载免费PDF全文
空间辐射环境中,聚合物介质的深层充放电效应是威胁航天器安全的重要因素之一.文中在Chudleigh和von Berlepsch所发展的电位衰减模型基础上引入传输电流项,考虑了电子入射引起的感应电导率和感应电场的影响,提出了新的分析研究介质材料深层充电规律和特征的模型.通过该模型,分析了不同辐射条件下介质的表面电位、内部电荷与电场分布的变化,并设计实验及援引其他实验数据对模型分析结果进行验证.分析和实验结果表明,聚合物介质在深层充电过程中的平衡电位随着入射电子束流强度和介质电阻率的增加而增大,决定深层充电平 关键词: 深层充电 电荷传输模型 电子束 聚合物  相似文献   

10.
《Composite Interfaces》2013,20(2-3):269-275
Ag+ ions, in poly(vinyl methyl ether) (PVME) hydrogel network have been reduced by electron beam irradiation to produce Ag clusters as nanoparticles in fully reduced and highly pure state. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. UV-visible absorption spectral characteristics of Ag cluster confirm that the PVME network is a very efficient stabilizer and prevents further aggregation of Ag clusters. From the results of TEM, it was found that Ag particles were homogenously dispersed in the PVME matrix.  相似文献   

11.
Space charge and surface potential profiles are investigated with numerical simulation for dielectric films of SiO2 positively charged by a focused electron beam. By combining the Monte Carlo method and the finite difference method, the simulation is preformed with a newly developed comprehensive two-dimensional model including electron scattering, charge transport and trapping. Results show that the space charge is distributed positively, like a semi-ellipsoid, within a high-density region of electrons and holes, but negatively outside the region due to electron diffusion along the radial and beam incident directions. Simultaneously, peak positions of the positive and negative space charge densities shift outwards or downwards with electron beam irradiation. The surface potential, along the radial direction, has a nearly flat-top around the center, abruptly decreases to negative values outside the high-density region and finally increases to zero gradually. Influences of electron beam and film parameters on the surface potential profile in the equilibrium state are also shown and analyzed. Furthermore, the variation of secondary electron signal of a large-scale integration sample positively charged in scanning electron microscopic observation is simulated and validated by experiment.  相似文献   

12.
The action of an electron beam on ordered dust structures in glow and low-pressure RF discharges was studied experimentally. The electron beam produces destruction and dynamic displacement of the dust structure. In the center of a dust structure, an electron beam with a low electron energy (tens of eV) at currents up to 1 mA caused structural disordering and “melting” in the region of its action but did not excite external crystal regions. Local action of an electron beam with a high electron energy (25 keV) and a beam current above 10 mA caused deformation of the whole dust structure and shifted it in the horizontal direction so that it was carried away from the RF discharge zone. The effect of dust structure displacements can be used to locally remove particles from a plasma.  相似文献   

13.
A newly-developed method permits an electric plasma discharge to occur with relatively low electric power in insulating organic solutions due to the presence of an ultrasonic cavitation. A stable electric plasma could be generated in an ultrasonic cavitation field containing a thousand tiny activated bubbles, in which the electric conductivity could be improved due to formed radicals and free electrons, using copper electrodes and a titanium ultrasonic horn. This method allowed us to synthesize pyrolytic amorphous carbon nanoparticles smaller than about 30 nm in diameter from benzene liquid. In addition, we synthesized TiC nanoparticles about 50-150 nm in size, and copper nanoparticles smaller than 10 nm, which were encapsulated in multilayered graphite cages. Finally, we used GC-MS and MALDI-TOF-MS to observe and analyze the polymerized compounds and the degree of polymerization of the benzene liquid after the plasma treatment.  相似文献   

14.
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z = 6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron–hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron–hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis.  相似文献   

15.
The formation of an electron layer and the generation of an electron beam in magnetron guns where secondary emission is triggered by nanosecond pulses are studied. In the guns with small cross sizes, hollow electron beams with an outer diameter of 3–6 mm are generated. The beam current is 1–2 A, and the cathode voltage is 5–7 kV. Results obtained indicate that the generation of nanosecond beam-current pulses is a possibility.  相似文献   

16.
The initial stage of forming the electron sheath and electron beam generation in magnetron guns for the case when the secondary emission process is triggered by nanosecond pulses is considered. In the guns with small transverse sizes, tubular electron beams with an outer diameter of 4–6 mm and a current of 1–2 A are produced at a cathode voltage of 5–10 kV. It is shown that the formation of the electron cloud and beam current pulse front for a time of ≥2 ns is a possibility.  相似文献   

17.
F. Pesty  P. Garoche 《Surface science》2005,580(1-3):153-162
The expected low-energy electron diffraction by an insulator is deduced from the consequence of the surface charge distribution on the diffraction process. If the yield of secondary electron emission is greater than unity, the surface reaches electrostatic equilibrium and charges positively. Then incident electrons are simply accelerated and their wavelength is shortened, so the diffraction condition is modified. We show that this modification is strictly compensated by the deviation of the diffracted backward electron crossing the charged surface. The diffraction pattern displays the same geometry, size and symmetry but the diffracted intensity is modified. Through this process the low energy electron diffraction is shown to be an efficient tool to investigate the charging process induced on insulator surfaces by an electron beam. This is exemplified with the surface of mica muscovite, where we relate the oscillation of the surface charge to the evolution of the intensity of the diffraction spots.  相似文献   

18.
We present a novel, simple asymptotic expansion for the spectrum of radiation that is backscattered from a laser by a counterpropagating (or copropagating) electron. The solutions are presented in such a way that they explicitly show the relative merit of using an intense laser and of an energetic electron beam in x-ray production in the single particle regime. Simple scaling laws are given.  相似文献   

19.
The scattering of a well collimated electron beam by a strong standing laser wave of ultrashort duration, giving rise to a great number of scattered photons, is considered. This type of scattering is found to cause an electron beam to divide effectively into two parts. Ultrashort laser pulses are shown to be capable of forming ultrashort electron bunches whose length is governed by the laser beam diameter.  相似文献   

20.
在惰性气氛下,用电子束对聚碳硅烷 (PCS) 进行辐照改性。利用傅里叶变换红外光谱分析、凝胶含量测定以及热重-气相色谱-质谱连用技术对不同剂量改性的PCS进行了分析表征,研究了辐照剂量对PCS结构与热解性能的影响。结果表明,电子束辐照作用使PCS样品中大量SiH键和CH键发生断裂,形成了以SiCSi为骨架的三维网状凝胶产物,当辐照剂量高于3 MGy时,PCS的凝胶化程度随辐照剂量的增加而明显变大。热重分析表明,电子束辐照有利于提高PCS的热稳定性,其初始失重温度和陶瓷化产率都会随辐照剂量的增加而升高,其中,经20 MGy辐照后的PCS样品的陶瓷化产率可达87%。此外,对于400 ℃预处理的PCS样品,在相同吸收剂量下,样品的凝胶质量分数、初始失重温度和最终陶瓷化产率都较未处理的高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号