首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase formation in the system HfO(NO3)2-H3PO4-CsF(HF)-H2O was studied along the sections at the molar ratios PO 4 3? /Hf = 0.5, 1.5, and 2.0 and RbF:Hf = 1?C5, and also in the presence of HF at CsF: Hf = 1. The initial solutions contained 2?C24 wt % HfO2. The synthesis was performed at room temperature. The following substances were isolated: crystalline cesium fluorophosphate hafnates CsHf2F6PO4 · 4H2O, CsHfF2PO4 · 0.5H2O, and CsH2Hf2F2(PO4)3 · 2H2O; X-ray amorphous cesium fluorophosphate hafnate of the average composition Cs2Hf3O1.5F5(PO4)2 · 5H2O; and X-ray amorphous cesium fluorophosphate nitrate hafnate Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O. The compositions of the amorphous phases should be refined. Cesium fluorophosphate hafnates were obtained for the first time. The compounds were studied by crystal-optical, elemental, X-ray diffraction, IR spectroscopic, and electron microscopic analyses.  相似文献   

2.
Potassium, rhubidium, and caesium fluorophosphatozirconates (hafnates) and oxo(hydroxo)fluorophosphatonitratometalates with PO 4 3? /Zr molar ratios of 2.0, 1.5, 1.0, 0.66, 0.5, and 0.33 are synthesized for the first time. Most of them form either fine crystalline or X-ray amorphous particles. In order to characterize them IR spectroscopy and SEM are used. For the crystalline compounds the types of PO4 groups and the character of bonds between fluorine and water are revealed. The occurrence of triple MeF4·Rb(PO4)0.33·RbNO3 (Me = Zr, Hf) salts and also M3Me3(PO4)5·3HF crystalline solvates is found. The layered habit of K3Hf3(PO4)5·3HF, RbHfF2PO4·0.5H2O, Rb3Hf3(PO4)5·3HF, CsHfF2PO4·0.5H2O, CsHf2F6PO4·4H2O, and CsH2Hf2F2(PO4)3·2H2O crystals gives grounds to suppose that the structure of these compounds is layered unlike the structure of triple MeF4·Rb(PO4)0.33·RbNO3 salts.  相似文献   

3.
The thermal stability of cesium fluorophosphatohafnates (crystalline CsHf2F2(HPO4)2PO4 · 2H2O, CsHfF2PO4 · 0.5H2O, CsHf2F6PO4 · 4H2O and X-ray amorphous Cs2Hf3O1.5F5(PO4)2 · 5H2O, Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O) was determined. The weight ratios Cs+/Hf and PO 4 3? /ZrHf in CsHf2F2(HPO4)2PO4 · 2H2O were confirmed by identifying the calcination production CsHf2(PO4)3 (~1000°C). A new crystalline compound CsHf2F(HPO4)(PO4)2 was found by thermogravimetric and X-ray powder diffraction analysis during heating. A new method for hydrothermal synthesis of CsHf2(PO4)3, which was different from the already known one, was proposed. It was ascertained that CsHf2(PO4)3 possesses a significant X-ray luminescence; whereas in fluorophosphatehafnates show low luminescence intensity.  相似文献   

4.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

5.
Phase formation in the ZrO(NO3)2-NaF(HF)-H3PO4-H2O system was studied at 20°C and 2.0–14.5 wt % ZrO2 in the initial solution along sections with molar ratios PO 4 3? /Zr = 0.5 and 1.5 and also in the presence of hydrogen fluoride at Na/Zr = 1 and PO 4 3? /Zr = 0.5, 1.0, and 1.5. Crystalline zirconium hydrophosphate Zr(HPO4)2 · H2O, fluorozirconates Na5Zr2F13 and Na7Zr6F31 · 12H2O, fluorophosphatozirconates NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O, and amorphous NaZrO0.5F(PO4) · 4H2O (provisional composition) were separated at room temperature. NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O were prepared for the first time and were studied by crystal-optical, elemental, and thermal analyses, X-ray powder diffraction, IR spectroscopy, scanning electron microscopy (SEM), and X-ray microanalysis. Na7Hf6F31 · 12H2O was found to exist in a mixture with the hydrophosphate.  相似文献   

6.
The phase formation in the system ZrO(NO3)2-H3PO4-CsF(HF)-H2O was studied at the molar ratio CsF/Zr = 1 along the sections PO 4 3? /Zr = 0.5 and 1.5 at a ZrO2 concentration in the initial solution of 2?C14 wt %. The following compounds were isolated: Cs5Zr4F21 · 3H2O, CsZr2(PO4)3 · 2HF · 2H2O, CsZrF2PO4 · H2O, CsZr2F6PO4 · 4H2O (for the first time), CsHZrF3PO4 (for the first time), Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O. The compositions of CsZrF2PO4 · H2O, Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O are conditional. All the compounds were characterized by crystal-optical, X-ray powder diffraction, thermal analyses, and IR spectroscopy. The formula CsHZrF3PO4 was established by energy-dispersive analysis with a LEO-1450 scanning electron microscope and an MS-46 CAMECA X-ray microanalyzer.  相似文献   

7.
Potassium fluorophosphate hafnates (PFPH) K3H3Hf3F3(PO4)5 and KHf2F3(PO4)2 · 2H2O were synthesized for the first time, and a KZr2F3(PO4)2 · 2H2O phase was found to exist. The compounds were studied by crystal-optical, elemental, X-ray powder diffraction, thermogravimetric, IR spectroscopic, and electron microscopic analyses. It was found that PFPH crystallize as one-dimensional nanoparticles. The IR spectra showed that PFPH K3H3M3F3(PO4)5 (M = Zr, Hf) are crystal solvate K3M3(PO4)5 · 3HF. Annealing of K3H3Hf3F3(PO4)5 and KHf2F3(PO4)2 · 2H2O at 1000°C gives rise to mixtures that mostly contain various phosphate hafnates.  相似文献   

8.
From solutions containing 2–17 wt % TiO2 at the molar ratios M/Ti = 1–4, F/Ti = 2–4, and PO 4 3? /Ti = 0.5–10 under mild conditions, fluoro- and oxo(hydroxo) fluorophosphate titanates were isolated: crystalline M2TiF6 (M = K, Rb, Cs) and K2Ti2O2.5F2PO4 · 2H2O, and amorphous K3Ti4O(OH)F7(PO4)3 · 5H2O, Cs2Ti3O2F7PO4 · 6H2O, and CsTi3O3F4PO4 · 3H2O. In a mixture with M2TiF6 and KCl, phosphate-ion-containing crystalline phases of unidentified composition were detected. The phases were studied by elemental, crystal-optical, X-ray powder diffraction, thermal, IR spectroscopic, and electron microscopic analyses. Annealing fluorophosphate titanates gives a mixture of MTiOPO4 and TiO2. All the mentioned alkali metal fluorophosphates contain the tetrahedral ion PO 4 3? and titanium polyhedra with bonds Ti-F and Ti-O; some of them also contain bridging oxygen connecting titanium atoms: Ti-O-Ti; i.e., these substances are polymeric.  相似文献   

9.
Rubidium fluorophosphatozirconates (RFPZs) were synthesized along sections of the ZrO2-H3PO4-RbF-H2O system where PO 4 3? /Zr = 1–2 (mol/mol) and RbF/Zr = 1–5 (mol/mol) and the initial solution contains 2–5 wt % ZrO2. The following RFPZs have been isolated for the first time: RbZrF2PO4 · 0.5H2O, Rb3H3Zr3F3(PO4)5, and RbZr3F4(PO4)3 · 1.5H2O. Their formation fields were determined. The compounds were characterized using powder X-ray diffraction, crystal-optical analysis, chemical analysis, electron probe microanalysis, thermal analysis, and IR spectroscopy. Luminescent properties of the compounds were measured. All RFPZs are orthophosphates, have high thermal durability, and X-ray luminescence (XRL). Rb3H3Zr3F3(PO4)5 has the highest XRL intensity.  相似文献   

10.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

11.
Crystalline cesium fluorophosphatozirconates (CFPZs) CsZr2F6PO4 · 4H2O, CsZrF2PO4 · 0.5H2O, CsH2Zr2F2(PO4)3 · 2H2O, and amorphous Cs2Zr3OF6(PO4)2 · 3H2O were synthesized, and their thermal stability and luminescence ability were studied. The compositions of initial CsH2Zr2F2(PO4)3 · 2H2O and Cs2Zr3OF6(PO4)2 · 3H2O were refined. CsZr2O0.5F5PO4, CsHZr2F(PO4)3, CsZr2(PO4)3, and Cs2Zr3OF6(PO4)2 crystalline intermediates, which are comparable with BaSO4 and CaF2 luminophors in the context of their X-ray luminescence intensity, were recognized by thermal analysis and X-ray powder diffraction under heating.  相似文献   

12.
The system ZrO(NO3)2-H3PO4-KF(HF)-H2O was studied at ∼20°C along sections at molar ratios of PO43− = 0.5, 1.0, and 1.6; KF: Zr = 1−5; and HF: Zr = 2−6. Phases in precipitates were identified by X-ray powder diffraction; IR spectroscopy; and crystal-optical, chemical, X-ray fluorescence and thermal analyses. The following crystalline phases were isolated: potassium fluorozirconates K3ZrF7, K2ZrF6, δ-KZrF5, and KZrF5 · H2O; zirconium hydrophosphate Zr(HPO4)2 · 0.5H2O; and potassium fluorophosphate zirconate K3Zr3F3(HPO4)3(PO4)2. The following amorphous basic oxo(hydroxo)fluorohydrophosphate nitrates were isolated: K4Zr4O2.5F8(HPO4)2(NO3)3 · 6H2O, K2Zr3O3F2(HPO4)2(NO3)2 · H2O, and KZr3O1.5F3(HPO4)2(NO3)3 · 2H2O. Fields of solid phases were constructed, and the roles of anions and cations in the phase formation were considered.  相似文献   

13.
We studied phase formation in the ZrO(NO3)2-H3PO4-RbF-H2O system along PO43−/Zr = 0.5 (mol/mol) and RbF/Zr = 1–5 (mol/mol) sections with 2–10 wt % ZrO2 in the starting solution. We recovered amorphous rubidium oxofluorophosphatozirconate Rb2Zr3OF6(PO4)2 · 2H2O and the following fluorophosphatonitratozirconates: Rb2ZrF4(PO4)0.33NO3, which forms large cubic system crystals; weakly crystallized RbZr3OF3(PO4)2(NO3)2 · 5H2O; and amorphous Zr3OF3(PO4)2NO3 · (7–8) H2O. A shown by its IR spectrum, Rb2ZrF4(PO4)0.33NO3 contains NO3- and PO4 groups that are not coordinated to zirconium, meaning that this is a triple salt ZrF4 · Rb(PO4)0.33 · RbNO3. The formula units of the RbZr3OF3(PO4)2(NO3)2 · 5H2O and Zr3OF3(PO4)2NO3 · (7–8)H2O phases are only conventional. All compounds have been recovered for the first time.  相似文献   

14.
In the title compound, disodium cobalt tetrakis­(dihydrogen­phosphate) tetrahydrate, the CoII ion lies on an inversion centre and is octahedrally surrounded by two water molecules and four H2PO4 groups to give a cobalt complex anion of the form [Co(H2PO4)4(OH2)]2?. The three‐dimensional framework results from hydrogen bonding between the anions. The relationship with the structures of Co(H2PO4)2·2H2O and K2CoP4O12·5H2O is discussed.  相似文献   

15.
On the Existence of Intermediate Reaction Products of Potassium Hydrogen Phosphate and Diphosphate: K2H8(PO4)2P2O7 The crystal structure of K2H8(PO4)2P2O7 has been determined from diffractometer data obtained using MoKα radiation. The space group is Pca21 with a = 9.364(2), b = 7.458(2) and c = 19.560(2) Å, V = 1 366.0 Å3; dm = 2.17(1) g/cm3. Z = 4 · μ(MoKα) = 12.47 cm?1. The structure was solved by direct methods. The crystal structure was refined to R = 0.025 for 416 independent reflexions. Two kinds of PO4 exist and the mean value of P? O is 1.55(2) Å for one and 1.53(2) Å for the other. In P2O7 the angle P? O? P is 135(1)°. The distances P? O of bridge are 1.59(2) and 1.57(2) Å the mean value of P? O in terminals ? PO3 is 1.51(2) Å. The coordination numbers of the potassium ions are nine and eight. K2H8(PO4)2P2O7, compound with mixed anion PO4/P2O7 may be considered as reactional intermediary between acid orthophosphate and pyrophosphate.  相似文献   

16.
Fluorophosphatometallates with the composition K3H3Zr3F3(PO4)5, Rb3H3Zr3F3(PO4)5, Rb3H3Hf3F3(PO4)5, CsH2Hf2F2(PO4)3?2H2O are studied by 31P, 19F, and 1H NMR. It is found that protons enter in the composition of hydrophosphate groups and fluorine atoms occupy the terminal sites in the tetravalent metal environment. Schemes of the crystal structure of fluorophosphatometallates are proposed. It is established that in CsH2Hf2F2(PO4)3?2H2O water molecules are bonded to the phosphate group proton via a strong hydrogen bond and are characterized by a low energy barrier of molecular motions.  相似文献   

17.
The Mx Hy (A O4)z acid salts (M = Cs, Rb, K, Na, Li, NH4; A = S, Se, As, P) exhibit ferroelectric properties. The solid acids have low conductivity values and are of interest with regard to their thermal properties and proton conductivity. The crystal structure of caesium dihydrogen orthophosphate monohydrogen orthophosphate dihydrate, Cs3(H1.5PO4)2·2H2O, has been solved. The compound crystallizes in the space group Pbca and forms a structure with strong hydrogen bonds connecting phosphate tetrahedra that agrees well with the IR spectra. The dehydration of Cs3(H1.5PO4)2·2H2O with the loss of two water molecules occurs at 348–433 K. Anhydrous Cs3(H1.5PO4)2 is stable up to 548 K and is then converted completely into caesium pyrophosphate (Cs4P2O7) and CsPO3. Anhydrous Cs3(H1.5PO4)2 crystallizes in the monoclinic C 2 space group, with the unit‐cell parameters a = 11.1693 (4), b = 6.4682 (2), c = 7.7442 (3) Å and β = 71.822 (2)°. The conductivities of both compounds have been measured. In contrast to crystal hydrate Cs3(H1.5PO4)2·2H2O, the dehydrated form has rather low conductivity values of ∼6 × 10−6–10−8 S cm−1 at 373–493 K, with an activation energy of 0.91 eV.  相似文献   

18.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

19.
Benzenephosphonic acid quantitatively precipitates thorium as Th(C6H5PO3)2·3H2O at pH values as low as 0.5. The compound may be dried at 140° to 180° C and weighed, as a gravimetric means of determining thorium. On ignition, Th (C2H5PO3)2 3 H2O undergoes decomposition at 240° to 300° C to form Th(C6H5PO3)2·2H2O, at 450° to 650° C to form Th(HPO4)2·2H2O and finally at 800° to 1000° C to form Th(HPO4)2. The latter compound is stable to 1200° C.Potentiometrically (pK1' = 0.91, pK2' = 6.41) and spectrophotometrically (pK1' = 0.96, pK2' = 6.51) determined pK' values are reported. Absorption spectra of C6H5PO3H2, C6H5PO3H- and C6H5PO3-2 are reported. The solubility of Th (C6H5PO3)2·3H2O was studied as a function of pH and the average value of the solubility product (Ksp = 4s3) was found to be 3.24·10-31.  相似文献   

20.
In the article “Competitive Coordination of the Uranyl ion by Perchlorate and Water – The Crystal Structures of UO2(ClO4)2·3H2O and UO2(ClO4)2·5H2O and a Redetermination of UO2(ClO4)2·7H2O” (Z. Anorg. Allg. Chem. 2003 , 629, 1012–1016), some wrong parameters and bond lengths for UO2(ClO4)2·7H2O were given in table 1 and table 3 The correct parameters are: a = 1449.5(2) pm, b = 921.6(1) pm, c = 1067.5(2) pm, V = 1422.5(4)·106 pm3, ρ = 2.712 g·cm?3, μ = 119 cm?1. The corrected bond lengths for this structure are U–O(1) 175.8(5) pm, U–O(2) 239.1(5) pm, U–O(3) 240.8(5), U–O(4) 242.0(7). A cif file with the correct data has been deposited with the ICSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号