首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
It has been posited that the role of prosody in lexical segmentation is elevated when the speech signal is degraded or unreliable. Using predictions from Cutler and Norris' [J. Exp. Psychol. Hum. Percept. Perform. 14, 113-121 (1988)] metrical segmentation strategy hypothesis as a framework, this investigation examined how individual suprasegmental and segmental cues to syllabic stress contribute differentially to the recognition of strong and weak syllables for the purpose of lexical segmentation. Syllabic contrastivity was reduced in resynthesized phrases by systematically (i) flattening the fundamental frequency (F0) contours, (ii) equalizing vowel durations, (iii) weakening strong vowels, (iv) combining the two suprasegmental cues, i.e., F0 and duration, and (v) combining the manipulation of all cues. Results indicated that, despite similar decrements in overall intelligibility, F0 flattening and the weakening of strong vowels had a greater impact on lexical segmentation than did equalizing vowel duration. Both combined-cue conditions resulted in greater decrements in intelligibility, but with no additional negative impact on lexical segmentation. The results support the notion of F0 variation and vowel quality as primary conduits for stress-based segmentation and suggest that the effectiveness of stress-based segmentation with degraded speech must be investigated relative to the suprasegmental and segmental impoverishments occasioned by each particular degradation.  相似文献   

5.
This study investigates the effects of sentential context, lexical knowledge, and acoustic cues on the segmentation of connected speech. Listeners heard near-homophonous phrases (e.g., plmpaI for "plum pie" versus "plump eye") in isolation, in a sentential context, or in a lexically biasing context. The sentential context and the acoustic cues were piloted to provide strong versus mild support for one segmentation alternative (plum pie) or the other (plump eye). The lexically biasing context favored one segmentation or the other (e.g., skmpaI for "scum pie" versus *"scump eye," and lmpaI, for "lump eye" versus *"lum pie," with the asterisk denoting a lexically unacceptable parse). A forced-choice task, in which listeners indicated which of two words they thought they heard (e.g., "pie" or "eye"), revealed compensatory mechanisms between the sources of information. The effect of both sentential and lexical contexts on segmentation responses was larger when the acoustic cues were mild than when they were strong. Moreover, lexical effects were accompanied with a reduction in sensitivity to the acoustic cues. Sentential context only affected the listeners' response criterion. The results highlight the graded, interactive, and flexible nature of multicue segmentation, as well as functional differences between sentential and lexical contributions to this process.  相似文献   

6.
Can native listeners rapidly adapt to suprasegmental mispronunciations in foreign-accented speech? To address this question, an exposure-test paradigm was used to test whether Dutch listeners can improve their understanding of non-canonical lexical stress in Hungarian-accented Dutch. During exposure, one group of listeners heard a Dutch story with only initially stressed words, whereas another group also heard 28 words with canonical second-syllable stress (e.g., EEKhorn, "squirrel" was replaced by koNIJN "rabbit"; capitals indicate stress). The 28 words, however, were non-canonically marked by the Hungarian speaker with high pitch and amplitude on the initial syllable, both of which are stress cues in Dutch. After exposure, listeners' eye movements were tracked to Dutch target-competitor pairs with segmental overlap but different stress patterns, while they listened to new words from the same Hungarian speaker (e.g., HERsens, herSTEL, "brain," "recovery"). Listeners who had previously heard non-canonically produced words distinguished target-competitor pairs better than listeners who had only been exposed to Hungarian accent with canonical forms of lexical stress. Even a short exposure thus allows listeners to tune into speaker-specific realizations of words' suprasegmental make-up, and use this information for word recognition.  相似文献   

7.
8.
Weak consonants (e.g., stops) are more susceptible to noise than vowels, owing partially to their lower intensity. This raises the question whether hearing-impaired (HI) listeners are able to perceive (and utilize effectively) the high-frequency cues present in consonants. To answer this question, HI listeners were presented with clean (noise absent) weak consonants in otherwise noise-corrupted sentences. Results indicated that HI listeners received significant benefit in intelligibility (4 dB decrease in speech reception threshold) when they had access to clean consonant information. At extremely low signal-to-noise ratio (SNR) levels, however, HI listeners received only 64% of the benefit obtained by normal-hearing listeners. This lack of equitable benefit was investigated in Experiment 2 by testing the hypothesis that the high-frequency cues present in consonants were not audible to HI listeners. This was tested by selectively amplifying the noisy consonants while leaving the noisy sonorant sounds (e.g., vowels) unaltered. Listening tests indicated small (~10%), but statistically significant, improvements in intelligibility at low SNR conditions when the consonants were amplified in the high-frequency region. Selective consonant amplification provided reliable low-frequency acoustic landmarks that in turn facilitated a better lexical segmentation of the speech stream and contributed to the small improvement in intelligibility.  相似文献   

9.
The present study examined the benefits of providing amplified speech to the low- and mid-frequency regions of listeners with various degrees of sensorineural hearing loss. Nonsense syllables were low-pass filtered at various cutoff frequencies and consonant recognition was measured as the bandwidth of the signal was increased. In addition, error patterns were analyzed to determine the types of speech cues that were, or were not, transmitted to the listeners. For speech frequencies of 2800 Hz and below, a positive benefit of amplified speech was observed in every case, although the benefit provided was very often less than that observed in normal-hearing listeners who received the same increase in speech audibility. There was no dependence of this benefit upon the degree of hearing loss. Error patterns suggested that the primary difficulty that hearing-impaired individuals have in using amplified speech is due to their poor ability to perceive the place of articulation of consonants, followed by a reduced ability to perceive manner information.  相似文献   

10.
Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered "temporal envelopes," i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues.  相似文献   

11.
In face-to-face speech communication, the listener extracts and integrates information from the acoustic and optic speech signals. Integration occurs within the auditory modality (i.e., across the acoustic frequency spectrum) and across sensory modalities (i.e., across the acoustic and optic signals). The difficulties experienced by some hearing-impaired listeners in understanding speech could be attributed to losses in the extraction of speech information, the integration of speech cues, or both. The present study evaluated the ability of normal-hearing and hearing-impaired listeners to integrate speech information within and across sensory modalities in order to determine the degree to which integration efficiency may be a factor in the performance of hearing-impaired listeners. Auditory-visual nonsense syllables consisting of eighteen medial consonants surrounded by the vowel [a] were processed into four nonoverlapping acoustic filter bands between 300 and 6000 Hz. A variety of one, two, three, and four filter-band combinations were presented for identification in auditory-only and auditory-visual conditions: A visual-only condition was also included. Integration efficiency was evaluated using a model of optimal integration. Results showed that normal-hearing and hearing-impaired listeners integrated information across the auditory and visual sensory modalities with a high degree of efficiency, independent of differences in auditory capabilities. However, across-frequency integration for auditory-only input was less efficient for hearing-impaired listeners. These individuals exhibited particular difficulty extracting information from the highest frequency band (4762-6000 Hz) when speech information was presented concurrently in the next lower-frequency band (1890-2381 Hz). Results suggest that integration of speech information within the auditory modality, but not across auditory and visual modalities, affects speech understanding in hearing-impaired listeners.  相似文献   

12.
Several studies have demonstrated that when talkers are instructed to speak clearly, the resulting speech is significantly more intelligible than speech produced in ordinary conversation. These speech intelligibility improvements are accompanied by a wide variety of acoustic changes. The current study explored the relationship between acoustic properties of vowels and their identification in clear and conversational speech, for young normal-hearing (YNH) and elderly hearing-impaired (EHI) listeners. Monosyllabic words excised from sentences spoken either clearly or conversationally by a male talker were presented in 12-talker babble for vowel identification. While vowel intelligibility was significantly higher in clear speech than in conversational speech for the YNH listeners, no clear speech advantage was found for the EHI group. Regression analyses were used to assess the relative importance of spectral target, dynamic formant movement, and duration information for perception of individual vowels. For both listener groups, all three types of information emerged as primary cues to vowel identity. However, the relative importance of the three cues for individual vowels differed greatly for the YNH and EHI listeners. This suggests that hearing loss alters the way acoustic cues are used for identifying vowels.  相似文献   

13.
This study examined the effect of presumed mismatches between speech input and the phonological representations of English words by native speakers of English (NE) and Spanish (NS). The English test words, which were produced by a NE speaker and a NS speaker, varied orthogonally in lexical frequency and neighborhood density and were presented to NE listeners and to NS listeners who differed in English pronunciation proficiency. It was hypothesized that mismatches between phonological representations and speech input would impair word recognition, especially for items from dense lexical neighborhoods which are phonologically similar to many other words and require finer sound discrimination. Further, it was assumed that L2 phonological representations would change with L2 proficiency. The results showed the expected mismatch effect only for words from dense neighborhoods. For Spanish-accented stimuli, the NS groups recognized more words from dense neighborhoods than the NE group did. For native-produced stimuli, the low-proficiency NS group recognized fewer words than the other two groups. The-high proficiency NS participants' performance was as good as the NE group's for words from sparse neighborhoods, but not for words from dense neighborhoods. These results are discussed in relation to the development of phonological representations of L2 words. (200 words).  相似文献   

14.
This study investigated the effects of age and hearing loss on perception of accented speech presented in quiet and noise. The relative importance of alterations in phonetic segments vs. temporal patterns in a carrier phrase with accented speech also was examined. English sentences recorded by a native English speaker and a native Spanish speaker, together with hybrid sentences that varied the native language of the speaker of the carrier phrase and the final target word of the sentence were presented to younger and older listeners with normal hearing and older listeners with hearing loss in quiet and noise. Effects of age and hearing loss were observed in both listening environments, but varied with speaker accent. All groups exhibited lower recognition performance for the final target word spoken by the accented speaker compared to that spoken by the native speaker, indicating that alterations in segmental cues due to accent play a prominent role in intelligibility. Effects of the carrier phrase were minimal. The findings indicate that recognition of accented speech, especially in noise, is a particularly challenging communication task for older people.  相似文献   

15.
When listening to natural speech, listeners are fairly adept at using cues such as pitch, vocal tract length, prosody, and level differences to extract a target speech signal from an interfering speech masker. However, little is known about the cues that listeners might use to segregate synthetic speech signals that retain the intelligibility characteristics of speech but lack many of the features that listeners normally use to segregate competing talkers. In this experiment, intelligibility was measured in a diotic listening task that required the segregation of two simultaneously presented synthetic sentences. Three types of synthetic signals were created: (1) sine-wave speech (SWS); (2) modulated noise-band speech (MNB); and (3) modulated sine-band speech (MSB). The listeners performed worse for all three types of synthetic signals than they did with natural speech signals, particularly at low signal-to-noise ratio (SNR) values. Of the three synthetic signals, the results indicate that SWS signals preserve more of the voice characteristics used for speech segregation than MNB and MSB signals. These findings have implications for cochlear implant users, who rely on signals very similar to MNB speech and thus are likely to have difficulty understanding speech in cocktail-party listening environments.  相似文献   

16.
Intonation perception of English speech was examined for English- and Chinese-native listeners. F0 contour was manipulated from falling to rising patterns for the final words of three sentences. Listener's task was to identify and discriminate the intonation of each sentence (question versus statement). English and Chinese listeners had significant differences in the identification functions such as the categorical boundary and the slope. In the discrimination functions, Chinese listeners showed greater peakedness than English peers. The cross-linguistic differences in intonation perception were similar to the previous findings in perception of lexical tones, likely due to listeners' language background differences.  相似文献   

17.
Listeners often only have fragments of speech available to understand the intended message due to competing background noise. In order to maximize successful speech recognition, listeners must allocate their perceptual resources to the most informative acoustic properties. The speech signal contains temporally-varying acoustics in the envelope and fine structure that are present across the frequency spectrum. Understanding how listeners perceptually weigh these acoustic properties in different frequency regions during interrupted speech is essential for the design of assistive listening devices. This study measured the perceptual weighting of young normal-hearing listeners for the envelope and fine structure in each of three frequency bands for interrupted sentence materials. Perceptual weights were obtained during interruption at the syllabic rate (i.e., 4 Hz) and the periodic rate (i.e., 128 Hz) of speech. Potential interruption interactions with fundamental frequency information were investigated by shifting the natural pitch contour higher relative to the interruption rate. The availability of each acoustic property was varied independently by adding noise at different levels. Perceptual weights were determined by correlating a listener's performance with the availability of each acoustic property on a trial-by-trial basis. Results demonstrated similar relative weights across the interruption conditions, with emphasis on the envelope in high-frequencies.  相似文献   

18.
This study investigated age-related differences in sensitivity to temporal cues in modified natural speech sounds. Listeners included young noise-masked subjects, elderly normal-hearing subjects, and elderly hearing-impaired subjects. Four speech continua were presented to listeners, with stimuli from each continuum varying in a single temporal dimension. The acoustic cues varied in separate continua were voice-onset time, vowel duration, silence duration, and transition duration. In separate conditions, the listeners identified the word stimuli, discriminated two stimuli in a same-different paradigm, and discriminated two stimuli in a 3-interval, 2-alternative forced-choice procedure. Results showed age-related differences in the identification function crossover points for the continua that varied in silence duration and transition duration. All listeners demonstrated shorter difference limens (DLs) for the three-interval paradigm than the two-interval paradigm, with older hearing-impaired listeners showing larger DLs than the other listener groups for the silence duration cue. The findings support the general hypothesis that aging can influence the processing of specific temporal cues that are related to consonant manner distinctions.  相似文献   

19.
Cochlear implant (CI) users in tone language environments report great difficulty in perceiving lexical tone. This study investigated the augmentation of simulated cochlear implant audio by visual (facial) speech information for tone. Native speakers of Mandarin and Australian English were asked to discriminate between minimal pairs of Mandarin tones in five conditions: Auditory-Only, Auditory-Visual, CI-simulated Auditory-Only, CI-simulated Auditory-Visual, and Visual-Only (silent video). Discrimination in CI-simulated audio conditions was poor compared with normal audio, and varied according to tone pair, with tone pairs with strong non-F0 cues discriminated the most easily. The availability of visual speech information also improved discrimination in the CI-simulated audio conditions, particularly on tone pairs with strong durational cues. In the silent Visual-Only condition, both Mandarin and Australian English speakers discriminated tones above chance levels. Interestingly, tone-nai?ve listeners outperformed native listeners in the Visual-Only condition, suggesting firstly that visual speech information for tone is available, and may in fact be under-used by normal-hearing tone language perceivers, and secondly that the perception of such information may be language-general, rather than the product of language-specific learning. This may find application in the development of methods to improve tone perception in CI users in tone language environments.  相似文献   

20.
Different patterns of performance across vowels and consonants in tests of categorization and discrimination indicate that vowels tend to be perceived more continuously, or less categorically, than consonants. The present experiments examined whether analogous differences in perception would arise in nonspeech sounds that share critical transient acoustic cues of consonants and steady-state spectral cues of simplified synthetic vowels. Listeners were trained to categorize novel nonspeech sounds varying along a continuum defined by a steady-state cue, a rapidly-changing cue, or both cues. Listeners' categorization of stimuli varying on the rapidly changing cue showed a sharp category boundary and posttraining discrimination was well predicted from the assumption of categorical perception. Listeners more accurately discriminated but less accurately categorized steady-state nonspeech stimuli. When listeners categorized stimuli defined by both rapidly-changing and steady-state cues, discrimination performance was accurate and the categorization function exhibited a sharp boundary. These data are similar to those found in experiments with dynamic vowels, which are defined by both steady-state and rapidly-changing acoustic cues. A general account for the speech and nonspeech patterns is proposed based on the supposition that the perceptual trace of rapidly-changing sounds decays faster than the trace of steady-state sounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号