首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents various acoustic measures used to examine the sequence /a # C/, where "#" represents different prosodic boundaries in French. The 6 consonants studied are /b d g f s S/ (3 stops and 3 fricatives). The prosodic units investigated are the utterance, the intonational phrase, the accentual phrase, and the word. It is found that vowel target values, formant transitions into the stop consonant, and the rate of change in spectral tilt into the fricative, are affected by the strength of the prosodic boundary. F1 becomes higher for /a/ the stronger the prosodic boundary, with the exception of one speaker's utterance data, which show the effects of articulatory declension at the utterance level. Various effects of the stop consonant context are observed, the most notable being a tendency for the vowel /a/ to be displaced in the direction of the F2 consonant "locus" for /d/ (the F2 consonant values for which remain relatively stable across prosodic boundaries) and for /g/ (the F2 consonant values for which are displaced in the direction of the velar locus in weaker prosodic boundaries, together with those of the vowel). Velocity of formant transition may be affected by prosodic boundary (with greater velocity at weaker boundaries), though results are not consistent across speakers. There is also a tendency for the rate of change in spectral tilt moving from the vowel to the fricative to be affected by the presence of a prosodic boundary, with a greater rate of change at the weaker prosodic boundaries. It is suggested that spectral cues, in addition to duration, amplitude, and F0 cues, may alert listeners to the presence of a prosodic boundary.  相似文献   

2.
The perception of voicing in final velar stop consonants was investigated by systematically varying vowel duration, change in offset frequency of the final first formant (F1) transition, and rate of frequency change in the final F1 transition for several vowel contexts. Consonant-vowel-consonant (CVC) continua were synthesized for each of three vowels, [i,I,ae], which represent a range of relatively low to relatively high-F1 steady-state values. Subjects responded to the stimuli under both an open- and closed-response condition. Results of the study show that both vowel duration and F1 offset properties influence perception of final consonant voicing, with the salience of the F1 offset property higher for vowels with high-F1 steady-state frequencies than low-F1 steady-state frequencies, and the opposite occurring for the vowel duration property. When F1 onset and offset frequencies were controlled, rate of the F1 transition change had inconsistent and minimal effects on perception of final consonant voicing. Thus the findings suggest that it is the termination value of the F1 offset transition rather than rate and/or duration of frequency change, which cues voicing in final velar stop consonants during the transition period preceding closure.  相似文献   

3.
The addition of low-passed (LP) speech or even a tone following the fundamental frequency (F0) of speech has been shown to benefit speech recognition for cochlear implant (CI) users with residual acoustic hearing. The mechanisms underlying this benefit are still unclear. In this study, eight bimodal subjects (CI users with acoustic hearing in the non-implanted ear) and eight simulated bimodal subjects (using vocoded and LP speech) were tested on vowel and consonant recognition to determine the relative contributions of acoustic and phonetic cues, including F0, to the bimodal benefit. Several listening conditions were tested (CI/Vocoder, LP, T(F0-env), CI/Vocoder + LP, CI/Vocoder + T(F0-env)). Compared with CI/Vocoder performance, LP significantly enhanced both consonant and vowel perception, whereas a tone following the F0 contour of target speech and modulated with an amplitude envelope of the maximum frequency of the F0 contour (T(F0-env)) enhanced only consonant perception. Information transfer analysis revealed a dual mechanism in the bimodal benefit: The tone representing F0 provided voicing and manner information, whereas LP provided additional manner, place, and vowel formant information. The data in actual bimodal subjects also showed that the degree of the bimodal benefit depended on the cutoff and slope of residual acoustic hearing.  相似文献   

4.
Traditional accounts of speech perception generally hold that listeners use isolable acoustic "cues" to label phonemes. For syllable-final stops, duration of the preceding vocalic portion and formant transitions at syllable's end have been considered the primary cues to voicing decisions. The current experiment tried to extend traditional accounts by asking two questions concerning voicing decisions by adults and children: (1) What weight is given to vocalic duration versus spectral structure, both at syllable's end and across the syllable? (2) Does the naturalness of stimuli affect labeling? Adults and children (4, 6, and 8 years old) labeled synthetic stimuli that varied in vocalic duration and spectral structure, either at syllable's end or earlier in the syllable. Results showed that all listeners weighted dynamic spectral structure, both at syllable's end and earlier in the syllable, more than vocalic duration, and listeners performed with these synthetic stimuli as listeners had performed previously with natural stimuli. The conclusion for accounts of human speech perception is that rather than simply gathering acoustic cues and summing them to derive strings of phonemic segments, listeners are able to attend to global spectral structure, and use it to help recover explicitly phonetic structure.  相似文献   

5.
Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with the Advanced Bionics Clarion cochlear implant. Recognition was measured as a function of the number of spectral channels (noise bands or electrodes) at signal-to-noise ratios of + 15, + 10, +5, 0 dB, and in quiet. Performance with three different speech processing strategies (SPEAK, CIS, and SAS) was similar across all conditions, and improved as the number of electrodes increased (up to seven or eight) for all conditions. For all noise levels, vowel and consonant recognition with the SPEAK speech processor did not improve with more than seven electrodes, while for normal-hearing listeners, performance continued to increase up to at least 20 channels. Speech recognition on more difficult speech materials (word and sentence recognition) showed a marginally significant increase in Nucleus-22 listeners from seven to ten electrodes. The average implant score on all processing strategies was poorer than scores of NH listeners with similar processing. However, the best CI scores were similar to the normal-hearing scores for that condition (up to seven channels). CI listeners with the highest performance level increased in performance as the number of electrodes increased up to seven, while CI listeners with low levels of speech recognition did not increase in performance as the number of electrodes was increased beyond four. These results quantify the effect of number of spectral channels on speech recognition in noise and demonstrate that most CI subjects are not able to fully utilize the spectral information provided by the number of electrodes used in their implant.  相似文献   

6.
This study assessed the acoustic and perceptual effect of noise on vowel and stop-consonant spectra. Multi-talker babble and speech-shaped noise were added to vowel and stop stimuli at -5 to +10 dB S/N, and the effect of noise was quantified in terms of (a) spectral envelope differences between the noisy and clean spectra in three frequency bands, (b) presence of reliable F1 and F2 information in noise, and (c) changes in burst frequency and slope. Acoustic analysis indicated that F1 was detected more reliably than F2 and the largest spectral envelope differences between the noisy and clean vowel spectra occurred in the mid-frequency band. This finding suggests that in extremely noisy conditions listeners must be relying on relatively accurate F1 frequency information along with partial F2 information to identify vowels. Stop consonant recognition remained high even at -5 dB despite the disruption of burst cues due to additive noise, suggesting that listeners must be relying on other cues, perhaps formant transitions, to identify stops.  相似文献   

7.
Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1-2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognition.  相似文献   

8.
Cochlear implants provide users with limited spectral and temporal information. In this study, the amount of spectral and temporal information was systematically varied through simulations of cochlear implant processors using a noise-excited vocoder. Spectral information was controlled by varying the number of channels between 1 and 16, and temporal information was controlled by varying the lowpass cutoff frequencies of the envelope extractors from 1 to 512 Hz. Consonants and vowels processed using those conditions were presented to seven normal-hearing native-English-speaking listeners for identification. The results demonstrated that both spectral and temporal cues were important for consonant and vowel recognition with the spectral cues having a greater effect than the temporal cues for the ranges of numbers of channels and lowpass cutoff frequencies tested. The lowpass cutoff for asymptotic performance in consonant and vowel recognition was 16 and 4 Hz, respectively. The number of channels at which performance plateaued for consonants and vowels was 8 and 12, respectively. Within the above-mentioned ranges of lowpass cutoff frequency and number of channels, the temporal and spectral cues showed a tradeoff for phoneme recognition. Information transfer analyses showed different relative contributions of spectral and temporal cues in the perception of various phonetic/acoustic features.  相似文献   

9.
Synthesis (carrier) signals in acoustic models embody assumptions about perception of auditory electric stimulation. This study compared speech intelligibility of consonants and vowels processed through a set of nine acoustic models that used Spectral Peak (SPEAK) and Advanced Combination Encoder (ACE)-like speech processing, using synthesis signals which were representative of signals used previously in acoustic models as well as two new ones. Performance of the synthesis signals was determined in terms of correspondence with cochlear implant (CI) listener results for 12 attributes of phoneme perception (consonant and vowel recognition; F1, F2, and duration information transmission for vowels; voicing, manner, place of articulation, affrication, burst, nasality, and amplitude envelope information transmission for consonants) using four measures of performance. Modulated synthesis signals produced the best correspondence with CI consonant intelligibility, while sinusoids, narrow noise bands, and varying noise bands produced the best correspondence with CI vowel intelligibility. The signals that performed best overall (in terms of correspondence with both vowel and consonant attributes) were modulated and unmodulated noise bands of varying bandwidth that corresponded to a linearly varying excitation width of 0.4 mm at the apical to 8 mm at the basal channels.  相似文献   

10.
This paper investigates the perception of non-native phoneme contrasts which exist in the native language, but not in the position tested. Like English, Dutch contrasts voiced and voiceless obstruents. Unlike English, Dutch allows only voiceless obstruents in word-final position. Dutch and English listeners' accuracy on English final voicing contrasts and their use of preceding vowel duration as a voicing cue were tested. The phonetic structure of Dutch should provide the necessary experience for a native-like use of this cue. Experiment 1 showed that Dutch listeners categorized English final /z/-/s/, /v/-/f/, /b/-/p/, and /d/-/t/ contrasts in nonwords as accurately as initial contrasts, and as accurately as English listeners did, even when release bursts were removed. In experiment 2, English listeners used vowel duration as a cue for one final contrast, although it was uninformative and sometimes mismatched other voicing characteristics, whereas Dutch listeners did not. Although it should be relatively easy for them, Dutch listeners did not use vowel duration. Nevertheless, they attained native-like accuracy, and sometimes even outperformed the native listeners who were liable to be misled by uninformative vowel duration information. Thus, native-like use of cues for non-native but familiar contrasts in unfamiliar positions may hardly ever be attained.  相似文献   

11.
Recent studies have shown that synthesized versions of American English vowels are less accurately identified when the natural time-varying spectral changes are eliminated by holding the formant frequencies constant over the duration of the vowel. A limitation of these experiments has been that vowels produced by formant synthesis are generally less accurately identified than the natural vowels after which they are modeled. To overcome this limitation, a high-quality speech analysis-synthesis system (STRAIGHT) was used to synthesize versions of 12 American English vowels spoken by adults and children. Vowels synthesized with STRAIGHT were identified as accurately as the natural versions, in contrast with previous results from our laboratory showing identification rates 9%-12% lower for the same vowels synthesized using the cascade formant model. Consistent with earlier studies, identification accuracy was not reduced when the fundamental frequency was held constant across the vowel. However, elimination of time-varying changes in the spectral envelope using STRAIGHT led to a greater reduction in accuracy (23%) than was previously found with cascade formant synthesis (11%). A statistical pattern recognition model, applied to acoustic measurements of the natural and synthesized vowels, predicted both the higher identification accuracy for vowels synthesized using STRAIGHT compared to formant synthesis, and the greater effects of holding the formant frequencies constant over time with STRAIGHT synthesis. Taken together, the experiment and modeling results suggest that formant estimation errors and incorrect rendering of spectral and temporal cues by cascade formant synthesis contribute to lower identification accuracy and underestimation of the role of time-varying spectral change in vowels.  相似文献   

12.
Five commonly used methods for determining the onset of voicing of syllable-initial stop consonants were compared. The speech and glottal activity of 16 native speakers of Cantonese with normal voice quality were investigated during the production of consonant vowel (CV) syllables in Cantonese. Syllables consisted of the initial consonants /ph/, /th/, /kh/, /p/, /t/, and /k/ followed by the vowel /a/. All syllables had a high level tone, and were all real words in Cantonese. Measurements of voicing onset were made based on the onset of periodicity in the acoustic waveform, and on spectrographic measures of the onset of a voicing bar (f0), the onset of the first formant (F1), second formant (F2), and third formant (F3). These measurements were then compared against the onset of glottal opening as determined by electroglottography. Both accuracy and variability of each measure were calculated. Results suggest that the presence of aspiration in a syllable decreased the accuracy and increased the variability of spectrogram-based measurements, but did not strongly affect measurements made from the acoustic waveform. Overall, the acoustic waveform provided the most accurate estimate of voicing onset; measurements made from the amplitude waveform were also the least variable of the five measures. These results can be explained as a consequence of differences in spectral tilt of the voicing source in breathy versus modal phonation.  相似文献   

13.
Nonlinear sensory and neural processing mechanisms have been exploited to enhance spectral contrast for improvement of speech understanding in noise. The "companding" algorithm employs both two-tone suppression and adaptive gain mechanisms to achieve spectral enhancement. This study implemented a 50-channel companding strategy and evaluated its efficiency as a front-end noise suppression technique in cochlear implants. The key parameters were identified and evaluated to optimize the companding performance. Both normal-hearing (NH) listeners and cochlear-implant (CI) users performed phoneme and sentence recognition tests in quiet and in steady-state speech-shaped noise. Data from the NH listeners showed that for noise conditions, the implemented strategy improved vowel perception but not consonant and sentence perception. However, the CI users showed significant improvements in both phoneme and sentence perception in noise. Maximum average improvement for vowel recognition was 21.3 percentage points (p<0.05) at 0 dB signal-to-noise ratio (SNR), followed by 17.7 percentage points (p<0.05) at 5 dB SNR for sentence recognition and 12.1 percentage points (p<0.05) at 5 dB SNR for consonant recognition. While the observed results could be attributed to the enhanced spectral contrast, it is likely that the corresponding temporal changes caused by companding also played a significant role and should be addressed by future studies.  相似文献   

14.
This study investigated age-related differences in sensitivity to temporal cues in modified natural speech sounds. Listeners included young noise-masked subjects, elderly normal-hearing subjects, and elderly hearing-impaired subjects. Four speech continua were presented to listeners, with stimuli from each continuum varying in a single temporal dimension. The acoustic cues varied in separate continua were voice-onset time, vowel duration, silence duration, and transition duration. In separate conditions, the listeners identified the word stimuli, discriminated two stimuli in a same-different paradigm, and discriminated two stimuli in a 3-interval, 2-alternative forced-choice procedure. Results showed age-related differences in the identification function crossover points for the continua that varied in silence duration and transition duration. All listeners demonstrated shorter difference limens (DLs) for the three-interval paradigm than the two-interval paradigm, with older hearing-impaired listeners showing larger DLs than the other listener groups for the silence duration cue. The findings support the general hypothesis that aging can influence the processing of specific temporal cues that are related to consonant manner distinctions.  相似文献   

15.
There exists no clear understanding of the importance of spectral tilt for perception of stop consonants. It is hypothesized that spectral tilt may be particularly salient when formant patterns are ambiguous or degraded. Here, it is demonstrated that relative change in spectral tilt over time, not absolute tilt, significantly influences perception of /b/ vs /d/. Experiments consisted of burstless synthesized stimuli that varied in spectral tilt and onset frequency of the second formant. In Experiment 1, tilt of the consonant at voice onset was varied. In Experiment 2, tilt of the vowel steady state was varied. Results of these experiments were complementary and revealed a significant contribution of relative spectral tilt change only when formant information was ambiguous. Experiments 3 and 4 replicated Experiments 1 and 2 in an /aba/-/ada/ context. The additional tilt contrast provided by the initial vowel modestly enhanced effects. In Experiment 5, there was no effect for absolute tilt when consonant and vowel tilts were identical. Consistent with earlier studies demonstrating contrast between successive local spectral features, perceptual effects of gross spectral characteristics are likewise relative. These findings have implications for perception in nonlaboratory environments and for listeners with hearing impairment.  相似文献   

16.
Native and nonnative listeners categorized final /v/ versus /f/ in English nonwords. Fricatives followed phonetically long (originally /v/-preceding) or short (originally /f/-preceding) vowels. Vowel duration was constant for each participant and sometimes mismatched other voicing cues. Previous results showed that English but not Dutch listeners (whose L1 has no final voicing contrast) nevertheless used the misleading vowel duration for /v/-/f/ categorization. New analyses showed that Dutch listeners did use vowel duration initially, but quickly reduced its use, whereas the English listeners used it consistently throughout the experiment. Thus, nonnative listeners adapted to the stimuli more flexibly than native listeners did.  相似文献   

17.
Dynamic specification of coarticulated vowels   总被引:1,自引:0,他引:1  
An adequate theory of vowel perception must account for perceptual constancy over variations in the acoustic structure of coarticulated vowels contributed by speakers, speaking rate, and consonantal context. We modified recorded consonant-vowel-consonant syllables electronically to investigate the perceptual efficacy of three types of acoustic information for vowel identification: (1) static spectral "targets," (2) duration of syllabic nuclei, and (3) formant transitions into and out of the vowel nucleus. Vowels in /b/-vowel-/b/ syllables spoken by one adult male (experiment 1) and by two females and two males (experiment 2) served as the corpus, and seven modified syllable conditions were generated in which different parts of the digitized waveforms of the syllables were deleted and the temporal relationships of the remaining parts were manipulated. Results of identification tests by untrained listeners indicated that dynamic spectral information, contained in initial and final transitions taken together, was sufficient for accurate identification of vowels even when vowel nuclei were attenuated to silence. Furthermore, the dynamic spectral information appeared to be efficacious even when durational parameters specifying intrinsic vowel length were eliminated.  相似文献   

18.
Tone languages differ from English in that the pitch pattern of a single-syllable word conveys lexical meaning. In the present study, dependence of tonal-speech perception on features of the stimulation was examined using an acoustic simulation of a CIS-type speech-processing strategy for cochlear prostheses. Contributions of spectral features of the speech signals were assessed by varying the number of filter bands, while contributions of temporal envelope features were assessed by varying the low-pass cutoff frequency used for extracting the amplitude envelopes. Ten normal-hearing native Mandarin Chinese speakers were tested. When the low-pass cutoff frequency was fixed at 512 Hz, consonant, vowel, and sentence recognition improved as a function of the number of channels and reached plateau at 4 to 6 channels. Subjective judgments of sound quality continued to improve as the number of channels increased to 12, the highest number tested. Tone recognition, i.e., recognition of the four Mandarin tone patterns, depended on both the number of channels and the low-pass cutoff frequency. The trade-off between the temporal and spectral cues for tone recognition indicates that temporal cues can compensate for diminished spectral cues for tone recognition and vice versa. An additional tone recognition experiment using syllables of equal duration showed a marked decrease in performance, indicating that duration cues contribute to tone recognition. A third experiment showed that recognition of processed FM patterns that mimic Mandarin tone patterns was poor when temporal envelope and duration cues were removed.  相似文献   

19.
Several studies have demonstrated that when talkers are instructed to speak clearly, the resulting speech is significantly more intelligible than speech produced in ordinary conversation. These speech intelligibility improvements are accompanied by a wide variety of acoustic changes. The current study explored the relationship between acoustic properties of vowels and their identification in clear and conversational speech, for young normal-hearing (YNH) and elderly hearing-impaired (EHI) listeners. Monosyllabic words excised from sentences spoken either clearly or conversationally by a male talker were presented in 12-talker babble for vowel identification. While vowel intelligibility was significantly higher in clear speech than in conversational speech for the YNH listeners, no clear speech advantage was found for the EHI group. Regression analyses were used to assess the relative importance of spectral target, dynamic formant movement, and duration information for perception of individual vowels. For both listener groups, all three types of information emerged as primary cues to vowel identity. However, the relative importance of the three cues for individual vowels differed greatly for the YNH and EHI listeners. This suggests that hearing loss alters the way acoustic cues are used for identifying vowels.  相似文献   

20.
The purpose of this study was to determine the role of static, dynamic, and integrated cues for perception in three adult age groups, and to determine whether age has an effect on both consonant and vowel perception, as predicted by the "age-related deficit hypothesis." Eight adult subjects in each of the age ranges of young (ages 20-26), middle aged (ages 52-59), and old (ages 70-76) listened to synthesized syllables composed of combinations of [b d g] and [i u a]. The synthesis parameters included manipulations of the following stimulus variables: formant transition (moving or straight), noise burst (present or absent), and voicing duration (10, 30, or 46 ms). Vowel perception was high across all conditions and there were no significant differences among age groups. Consonant identification showed a definite effect of age. Young and middle-aged adults were significantly better than older adults at identifying consonants from secondary cues only. Older adults relied on the integration of static and dynamic cues to a greater extent than younger and middle-aged listeners for identification of place of articulation of stop consonants. Duration facilitated correct stop-consonant identification in the young and middle-aged groups for the no-burst conditions, but not in the old group. These findings for the duration of stop-consonant transitions indicate reductions in processing speed with age. In general, the results did not support the age-related deficit hypothesis for adult identification of vowels and consonants from dynamic spectral cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号