首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low- and high-frequency cochlear nonlinearity was studied by measuring distortion product otoacoustic emission input/output (DPOAE I/O) functions at 0.5 and 4 kHz in 103 normal-hearing subjects. Behavioral thresholds at both f2's were used to set L2 in dB SL for each subject. Primary levels were optimized by determining the L1 resulting in the largest L(dp) for each L2 for each subject and both f2's. DPOAE I/O functions were measured using L2 inputs from -10 dB SL (0.5 kHz) or -20 dB SL (4 kHz) to 65 dB SL (both frequencies). Mean DPOAE I/O functions, averaged across subjects, differed between the two frequencies, even when threshold was taken into account. The slopes of the I/O functions were similar at 0.5 and 4 kHz for high-level inputs, with maximum compression ratios of about 4:1. At both frequencies, the maximum slope near DPOAE threshold was approximately 1, which occurred at lower levels at 4 kHz, compared to 0.5 kHz. These results suggest that there is a wider dynamic range and perhaps greater cochlear-amplifier gain at 4 kHz, compared to 0.5 kHz. Caution is indicated, however, because of uncertainties in the interpretation of slope and because the confounding influence of differences in noise level could not be completely controlled.  相似文献   

2.
The aim of the present study was to compare distortion product otoacoustic emissions (DPOAEs) to loudness with regard to the potentiality of DPOAEs to determine characteristic quantities of the cochlear-impaired ear and to derive objective hearing aid parameters. Recently, Neely et al. [J. Acoust. Soc. Am. 114, 1499-1507 (2003)] compared DPOAE input/output functions to the Fletcher and Munson [J. Acoust. Soc. Am. 5, 82-108 (1933)] loudness function finding a close resemblance in the slope characteristics of both measures. The present study extended their work by performing both loudness and DPOAE measurements in the same subject sample, and by developing a method for the estimation of gain needed to compensate for loss of cochlear sensitivity and compression. DPOAEs and loudness exhibited similar behavior when plotted on a logarithmic scale and slope increased with increasing hearing loss, confirming the findings of Neely et al. To compensate for undesired nonpathological impacts on the magnitude of DPOAE level, normalization of DPOAE data was implemented. A close resemblance between gain functions based on loudness and normalized DPOAE data was achieved. These findings suggest that DPOAEs are able to quantify the loss of cochlear sensitivity and compression and thus might provide parameters for a noncooperative hearing aid adjustment.  相似文献   

3.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

4.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

5.
Slopes of forward-masked psychometric functions (FM PFs) were compared with distortion-product otoacoustic emission (DPOAE) input/output (I/O) parameters at 1 and 6 kHz to test the hypothesis that these measures provide similar estimates of cochlear compression. Implicit in this hypothesis is the assumption that both DPOAE I/O and FM PF slopes are functionally related to basilar-membrane (BM) response growth. FM PF-slope decreased with signal level, but this effect was reduced or reversed with increasing hearing loss; there was a trend of decreasing psychometric function (PF) slope with increasing frequency, consistent with greater compression at higher frequencies. DPOAE I/O functions at 6 kHz exhibited an increase in the breakpoint of a two-segment slope as a function of hearing loss with a concomitant decrease in the level of the distortion product (L(d)). Results of the comparison between FM PF and DPOAE I/O parameters revealed only a weak correlation, suggesting that one or both of these measures may provide unreliable information about BM compression.  相似文献   

6.
The aim of this study was to investigate whether distortion product otoacoustic emissions (DPOAEs) are a suitable means for detecting changes in outer hair cell (OHC) functionality due to exposure to three hours of discotheque music and whether efferent reflex strength of the medial olivocochlear bundle is able to predict the ear's susceptibility to high-level noise. High-resolution DPOAEs (Δf(2)=47 Hz) were recorded between 3.5 and 4.5 kHz at close-to-threshold primary tone levels. For comparison, high-resolution pure-tone audiometry was conducted in the same frequency range. Efferent reflex strength was measured by means of DPOAEs at a specific frequency with and without contralateral acoustic stimulation. A significant deterioration of more than 10 dB was found for pure-tone thresholds and DPOAE levels indicating that three hours of high-level noise exert a considerable influence on hearing capability and OHC functionality. A significant correlation between shifts in pure-tone threshold and shifts in DPOAE level occurred when removing data with differing calibration across measurements. There was no clear correlation between efferent reflex strength and shifts in pure-tone threshold or shifts in DPOAE level suggesting that the applied measures of efferent reflex strength may not be suitable for quantifying individual vulnerability to noise.  相似文献   

7.
DPOAE input/output (I/O) functions were measured at 7f2 frequencies (1 to 8 kHz; f2/f1 = 1.22) over a range of levels (-5 to 95 dB SPL) in normal-hearing and hearing-impaired human ears. L1-L2 was level dependent in order to produce the largest 2f1-f2 responses in normal ears. System distortion was determined by collecting DP data in six different acoustic cavities. These data were used to derive a multiple linear regression model to predict system distortion levels. The model was tested on cochlear-implant users and used to estimate system distortion in all other ears. At most but not all f2's, measurements in cochlear implant ears were consistent with model predictions. At all f2 frequencies, the ears with normal auditory thresholds produced I/O functions characterized by compressive nonlinear regions at moderate levels, with more rapid growth at low and high stimulus levels. As auditory threshold increased, DPOAE threshold increased, accompanied by DPOAE amplitude reductions, notably over the range of levels where normal ears showed compression. The slope of the I/O function was steeper in impaired ears. The data from normal-hearing ears resembled direct measurements of basilar membrane displacement in lower animals. Data from ears with hearing loss showed that the compressive region was affected by cochlear damage; however, responses at high levels of stimulation resembled those observed in normal ears.  相似文献   

8.
Temporal integration of loudness of 1 kHz tones with 5 and 200 ms durations was assessed in four subjects using two loudness measurement procedures: categorical loudness scaling (CLS) and loudness matching. CLS provides a reliable and efficient procedure for collecting data on the temporal integration of loudness and previously reported nonmonotonic behavior observed at mid-sound pressure level levels is replicated with this procedure. Stimuli that are assigned to the same category are effectively matched in loudness, allowing the measurement of temporal integration with CLS without curve-fitting, interpolation, or assumptions concerning the form of the loudness growth function.  相似文献   

9.
2f1-f2 distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs. DPOAEs showed complex time dependence at the onset of stimulation. The DPOAE, measured during the first 500 ms, can either decrease or increase at the onset depending on both the frequencies and levels of the primary tones. These changes are closely associated with amplitude minima (notches) of the DPOAE I/O functions. These notches are characteristic of DPOAE growth functions measured from guinea pigs for primary tones of 50-60-dB sound-pressure level (SPL). Apparent changes in the DPOAE amplitude occur because the notch shifts to higher levels of the primaries during the onset of stimulation. This shift of the notch to higher levels increases for lower f2/f1 ratios but does not exceed about 2 dB. DPOAE amplitude increases for a constant level of the primaries if the onset emission is situated at the low-level, falling slope of the notch. If the onset DPOAE is located on the high-level, rising slope of the notch, then the upward shift of the notch causes the emission either to decrease monotonically, or to decrease initially and then increase. By establishing that the 2f1-f2 onset changes reflect a shift in the growth-function notch, it is possible to predict the temporal behavior of DPOAEs in the two-dimensional space of the amplitude of the primaries and for their different frequency ratios.  相似文献   

10.
Stimulus frequency otoacoustic emission (SFOAE) input-output (I/O) functions were elicited in normal-hearing adults using unequal-frequency primaries in equal-level and fixed-suppressor level (Ls) conditions. Responses were repeatable and similar across a range of primary frequency ratios in the fixed-Ls condition. In comparison to equal-frequency primary conditions [Schairer, Fitzpatrick, and Keefe, J. Acoust. Soc. Am. 114, 944-966 (2003)], the unequal-frequency, fixed-Ls condition appears to be more useful for characterizing SFOAE response growth and relating it to basilar-membrane response growth, and for testing the ability to predict audiometric thresholds. Simultaneously recorded distortion-product OAE (DPOAE) I/O functions had higher thresholds than SFOAE I/O functions, and they identified the onset of the nonlinear-distortion mechanism in SFOAEs. DPOAE threshold often corresponded to nonmonotonicities in SFOAE I/O functions. This suggests that the level-dependent nonmonotonicities and associated phase shifts in SFOAE I/O functions were due to varying degrees of cancellation of two sources of SFOAE, such as coherent reflection and distortion mechanisms. Level-dependent noise was observed on-band (at the frequencies of the stimuli) but not off-band, or in the DPOAEs. The variability was observed in ears with normal hearing and ears with cochlear implants. In general, these results indicate the source of the variability is biological, possibly from within the middle ear.  相似文献   

11.
The purpose of this study is to understand why otoacoustic emission (OAE) levels are higher in normal-hearing human infants relative to adults. In a previous study, distortion product (DP) OAE input/output (I/O) functions were shown to differ at f2 = 6 kHz in adults compared to infants through 6 months of age. These DPOAE I/0 functions were used to noninvasively assess immaturities in forward/reverse transmission through the ear canal and middle ear [Abdala, C., and Keefe, D. H., (2006). J. Acoust Soc. Am. 120, 3832-3842]. In the present study, ear-canal reflectance and DPOAEs measured in the same ears were analyzed using a scattering-matrix model of forward and reverse transmission in the ear canal, middle ear, and cochlea. Reflectance measurements were sensitive to frequency-dependent effects of ear-canal and middle-ear transmission that differed across OAE type and subject age. Results indicated that DPOAE levels were larger in infants mainly because the reverse middle-ear transmittance level varied with ear-canal area, which differed by more than a factor of 7 between term infants and adults. The forward middle-ear transmittance level was -16 dB less in infants, so that the conductive efficiency was poorer in infants than adults.  相似文献   

12.
Distortion product otoacoustic emission (DPOAE) measures of cochlear function, including DPOAE suppression tuning curves and input/output (I/O) functions, are not adultlike in human infants. These findings suggest the cochlear amplifier might be functionally immature in newborns. However, many noncochlear factors influence DPOAEs and must be considered. This study examines whether age differences in DPOAE I/O functions recorded from infant and adult ears reflect maturation of ear-canal/middle-ear function or cochlear mechanics. A model based on linear middle-ear transmission and nonlinear cochlear generation was developed to fit the adult DPOAE I/O data. By varying only those model parameters related to middle-ear transmission (and holding cochlear parameters at adult values), the model successfully fitted I/O data from infants at birth through age 6 months. This suggests that cochlear mechanics are mature at birth. The model predicted an attenuation of stimulus energy through the immature ear canal and middle ear, and evaluated whether immaturities in forward transmission could explain the differences consistently observed between infant and adult DPOAE suppression. Results show that once the immaturity was compensated for by providing infants with a relative increase in primary tone level, DPOAE suppression tuning at f2= 6000 Hz was similar in adults and infants.  相似文献   

13.
Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810-1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (UO) functions after the DPOAE level (in dB SPL) was converted into pressure (in microPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 1/2-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1 = 0.4L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1 = L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20-65 dB SPL to 10-85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.  相似文献   

14.
Our aim in the present study was to apply extrapolated DPOAE I/O-functions [J. Acoust. Soc. Am. 111, 1810-1818 (2002); 113, 3275-3284 (2003)] in neonates in order to investigate their ability to estimate hearing thresholds and to differentiate between middle-ear and cochlear disorders. DPOAEs were measured in neonates after birth (mean age = 3.2 days) and 4 weeks later (follow-up) at 11 test frequencies between f2 = 1.5 and 8 kHz and compared to that found in normal hearing subjects and cochlear hearing loss patients. On average, in a single ear hearing threshold estimation was possible at about 2/3 of the test frequencies. A sufficient test performance of the approach is therefore suggested. Thresholds were higher at the first measurement compared to that found at the follow-up measurement. Since thresholds varied with frequency, transitory middle ear dysfunction due to amniotic fluid instead of cochlear immaturity is suggested to be the cause for the change in thresholds. DPOAE behavior in the neonate ears differed from that found in the cochlear hearing loss ears. From a simple model it was concluded that the difference between the estimated DPOAE threshold and the DPOAE detection threshold is able to differentiate between sound conductive and cochlear hearing loss.  相似文献   

15.
This study investigated noise-induced changes in suppression growth (SG) of distortion product otoacoustic emissions (DPOAEs). Detailed measurements of SG were obtained in rabbits as a function of f2 frequencies at four primary-tone levels. SG measures were produced by using suppressor tones (STs) presented at two fixed distances from f2. The magnitude of suppression was calculated for each ST level and depicted as contour plots showing the amount of suppression as a function of the f2 frequency. At each f2, SG indices included slope, suppression threshold, and an estimate of the tip-to-tail value. All suppression measures were obtained before and after producing a cochlear dysfunction using a monaural exposure to a 2-h, 110-dB SPL octave-band noise centered at 2 kHz. The noise exposure produced varying amounts of cochlear damage as revealed by changes in DP-grams and auditory brainstem responses. However, average measures of SG slopes, suppression thresholds, and tip-to-tail values failed to mirror the mean DP-gram loss patterns. When suppression-based parameters were correlated with the amount of DPOAE loss, small but significant correlations were observed for some measures. Overall, the findings suggest that measures derived from DPOAE SG are limited in their ability to detect noise-induced cochlear damage.  相似文献   

16.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

17.
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.  相似文献   

18.
Input-output (I/O) functions for stimulus-frequency (SFOAE) and distortion-product (DPOAE) otoacoustic emissions were recorded in 30 normal-hearing adult ears using a nonlinear residual method. SFOAEs were recorded at half octaves from 500-8000 Hz in an L1=L2 paradigm with L2=0 to 85 dB SPL, and in a paradigm with L1 fixed and L2 varied. DPOAEs were elicited with primary levels of Kummer et al. [J. Acoust. Soc. Am. 103, 3431-3444 (1998)] at f2 frequencies of 2000 and 4000 Hz. Interpretable SFOAE responses were obtained from 1000-6000 Hz in the equal-level paradigm. SFOAE levels were larger than DPOAEs levels, signal-to-noise ratios were smaller, and I/O functions were less compressive. A two-slope model of SFOAE I/O functions predicted the low-level round-trip attenuation, the breakpoint between linearity and compression, and compressive slope. In ear but not coupler recordings, the noise at the SFOAE frequency increased with increasing level (above 60 dB SPL), whereas noise at adjacent frequencies did not. This suggests the existence of a source of signal-dependent noise producing cochlear variability, which is predicted to influence basilar-membrane motion and neural responses. A repeatable pattern of notched SFOAE I/O functions was present in some ears, and explained using a two-source mechanism of SFOAE generation.  相似文献   

19.
When distortion product otoacoustic emissions (DPOAEs) are measured with a high-frequency resolution, the DPOAE shows quasi-periodic variations across frequency, called DPOAE fine structure. In this study the DPOAE fine structure is determined for 50 normal-hearing humans using fixed primary levels of L1/L2 = 65/45 dB. An algorithm is developed, which characterizes the fine structure ripples in terms of three parameters: ripple spacing, ripple height, and ripple prevalence. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though the DPOAE fine structure characteristics are individual and vary from subject to subject. On average the ripple spacing decreases with increasing frequency from 1/8 oct at 1 kHz to 3/32 oct at 5 kHz. The ripple prevalence is two to three ripples per 1/3 oct, and ripple heights of up to 32 dB could be detected. The 50 normal-hearing subjects were divided into two groups, the subjects of group A having slightly better hearing levels than subjects of group B. The subjects of group A have significantly higher DPOAE levels. The overall prevalence of fine structure ripples do not differ between the two groups, but are higher and narrower for subjects of group B than for group A.  相似文献   

20.
Both distortion-product otoacoustic emissions (DPOAEs) and performance in an auditory-masking task involving combination tones were measured in the same frequency region in the same ears. In the behavioral task, a signal of 3.6?kHz (duration 300?ms, rise/fall time 20?ms) was masked by a 3.0-kHz tone (62?dB SPL, continuously presented). These two frequencies can produce a combination tone at 2.4?kHz. When a narrowband noise (2.0-2.8?kHz, 17?dB spectrum level) was added as a second masker, detection of the 3.6-kHz signal worsened by 6-9?dB (the Greenwood effect), revealing that listeners had been using the combination tone at 2.4?kHz as a cue for detection at 3.6?kHz. Several outcomes differed markedly by sex and racial background. The Greenwood effect was substantially larger in females than in males, but only for the White group. When the magnitude of the Greenwood effect was compared with the magnitude of the DPOAE measured in the 2.4?kHz region, the correlations typically were modest, but were high for Non-White males. For many subjects, then, most of the DPOAE measured in the ear canal apparently is not related to the combination-tone cue that is masked by the narrowband noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号