首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contact angles of sessile drops were experimentally investigated in the electric field. The experimental setup was designed such that the electric field was applied to all three interfaces. The advanced Automated Polynomial Fitting (APF) methodology was employed to measure contact angles with high accuracy. The significance of the observations and trends was examined by conducting statistical tests of hypothesis. It was found that contact angles of polar liquids such as alcohols increase in the electric field. However, no significant trend was observed for nonpolar liquids such as alkanes. The change in the contact angle was found to be stronger for liquids with longer molecules. It was shown that the polarity of the electric field is not an underlying factor in the observed trends. Using the equation of state for interfacial tensions, the observed shift in contact angles was translated into a corresponding change in surface tension of the liquids. The results suggest that the surface tension of alcohols increases by one to two percent (depending on the size of molecules) when an electric field of the order of magnitude of 10(6) V/m is applied.  相似文献   

2.
We perform molecular dynamics simulations of water in the presence of hydrophobic/hydrophilic walls at T = 300 K and P = 0 GPa. For the hydrophilic walls, we use a hydroxylated silica model introduced in previous simulations [Lee, S. H.; Rossky, P. J. J. Chem. Phys. 1994, 100, 3334. Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G.; Phys. Rev. E 2006, 73, 041604.]. By rescaling the physical partial atomic charges by a parameter 0 相似文献   

3.
The apparent contact angle of Cassie-Baxter state water droplets can be calculated by the existing theoretical formula, but due to the defects of the micro-structured hydrophobic surface and some inevitable tiny disturbances in the experiment, Cassie-Baxter state water droplets will appear partly in Wenzel state, that is, the mixed state water droplets. In this paper, apparent contact angles of Cassie-Baxter state and mixed state water droplets on micro-structured hydrophobic surfaces are compared. The rese...  相似文献   

4.
虽然微结构疏水表面上Cassie-Baxter状态液滴的表观接触角已有理论预测公式,但实验研究发现,由于微结构疏水表面上的瑕疵,以及液滴受到的各种轻微扰动等原因,很容易造成Cassie-Baxter状态液滴局部区域出现Wenzel状态的情况(即混合状态),而有关混合状态液滴表观接触角的研究还比较少.本文通过对比相同微结构疏水表面上Cassie-Baxter状态和混合状态液滴表观接触角的大小,发现将Cassie-Baxter预测公式中的固液接触面积分数F换成最外缘三相接触线处的局部固液接触面积分数F′,则能同时较好地预测上述两种情况下液滴的表观接触角;通过进一步的研究发现,表观接触角的大小仅与最外缘三相接触线处的固液接触状态有关,而与其他处的固液接触状态无关.该结果对于进一步认识微结构疏水表面上液滴的表观接触角以及润湿性质具有重要意义.  相似文献   

5.
Problems of contact angle and solid surface free energy determination   总被引:8,自引:0,他引:8  
The current general problems of formulation and determination of surface free energy are discussed. So far several theories and approaches have been proposed, but formulation of surface and interfacial free energy, as regards its components, is still a very debatable issue. However, as long as no method for determination of real surface free energy quantities is known, even relative values charged with many simplified assumptions are useful for better understanding of the wetting processes. In this paper special focus is concentrated on powdered solids for which direct measurement of the contact angles is not possible. For such solids the porous layer imbibition techniques are most frequently applied. Then, using the wicking results the contact angle is calculated from Washburn's equation. However, such a procedure leads to overestimated contact angle values in comparison to those measured directly on smooth surfaces of the same solid, if such surface can be obtained at all. As a consequence, the solid surface free energy components calculated via such overestimated contact angles are significantly lower than those obtained from contact angles measured directly. Methodologies to avoid this problem are also described.  相似文献   

6.
It was recently reported that the ease of removal of sporelings of green seaweed Ulva under shear stress from the polymer surfaces was found to be linearly and positively correlated with contact angle and wetting hysteresis, i.e., the higher the hysteresis, the greater the removal. Motivated by this report, we examined the relationship between the bioadhesion of blood platelets and proteins with contact angle hysteresis of solid substrates using the data of published papers. It was determined that there is a linear and positive relationship between the contact angle hysteresis and bioadhesion of both blood platelets and γ-globulin protein contacting the solid substrates, i.e., the higher the hysteresis, the greater the bioadhesion. The reasons are discussed and it is proposed that testing the effect of CAH on the adhesion strengths of biomaterials on surfaces is useful in order to gain a better insight on the bioadhesion mechanism.  相似文献   

7.
In this work, droplet coalescence and the subsequent mixing in superhydrophobic surfaces is studied over a range of impact velocities and impact angles. Sanded Teflon surfaces are used as a novel two-dimensional microfluidics platform. These superhydrophobic surfaces exhibit a constant advancing contact angle of θ(A)=150° over a broad range of contact angle hysteresis. As a result, the effect of contact angle hysteresis on droplet coalescence and mixing can be studied. Based on the observed characteristics of coalescence, three different regimes of coalescence are identified as a function of both Weber number and impact angle. These regimes include oscillation dominated, rotation dominated, and mixed dynamics. It is shown that within Weber number ranges achievable in this experiment, hysteresis greatly reduces the deformation of the droplet coalescence process and the subsequent mixing. In head-on collisions, higher hysteresis is found to decrease the frequency at which the resulting dr oscillates. In the case of glancing collisions, where the resulting droplet is found to rotate, higher hysteresis increases the rate of rotation although the overall angular momentum is found to be independent of contact angle hysteresis.  相似文献   

8.
We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low concentration of Rhodamine-B (RB) (2 × 10(-7) mol/L). Interestingly, RB at that concentration was found to be aggregated at the air-liquid and solid (hydrophobic patch only)-liquid interfaces, which helps us to distinguish the liquid and solid interfaces as well as hydrophobic and hydrophilic patches by their corresponding fluorescent intensities. From the measured local contact angles, the line tension can be easily derived and the value is found to be (-2.06-1.53) × 10(-6) J/m.  相似文献   

9.
The influence of the long-range surface forces on the wetting of multi-scale partially wetted surfaces is discussed. The possibility of partial wetting is stipulated by a specific form of the Derjaguin isotherm. Equilibrium of a liquid meniscus inside a cylindrical capillary is used as a model. The interplay of capillary and disjoining pressures governs the equilibrium of the liquid in the nano- and micrometrically scaled pores constituting the relief of the surface. It is shown that capillaries with a radius smaller than a critical one will be completely filled by water, whereas the larger capillaries will be filled only partially. Thus, small capillaries will show the Wenzel type of wetting behavior, while the same liquid inside the large capillaries will promote the Cassie-Baxter type of wetting. Consideration of disjoining/conjoining pressure allows explaining of the “rose petal effect”, when a high apparent contact angle is accompanied with a high contact angle hysteresis.  相似文献   

10.
A new methodology capable of providing reliable and reproducible contact angle (theta) data has been employed to study the effect of clinical treatments grinding, acid etching, and deproteinization on medial dentin tissue. It is based on the application of the ADSA-CD algorithm to the determination of low-rate dynamic contact angles, obtained from slowly growing drops, and on contact angle measurement, as well as spreading behavior analysis, during the relaxation of the system (water on treated dentin) after initial drop growth. The theta data obtained were substantially more reproducible than those obtained with classical methods. A net effect of the treatment on theta was found, increasing dentin wettability: theta (polished) >theta (etched) >theta (deproteinized). The spreading rates correlate with the angles and are adequate for the dentin surface characterization. ANOVA and SNK tests show that for advancing contact angles the means corresponding to all treatments are significantly different. In the relaxing phase, mean angle and spreading rates on polished dentin differ significantly from those on etched and deproteinized dentin, but the latter do not differ significantly from each other.  相似文献   

11.
Advancing and receding contact angles of water, formamide and diiodomethane were measured on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on three different solid supports—glass, mica and poly(methyl methacrylate). Up to five statistical monolayers were deposited on the surfaces by spreading DPPC solution. It was found that even on five statistical DPPC monolayers, the hysteresis of a given liquid depends on the kind of solid support. Also on the same solid support the contact angle hysteresis is different for each probe liquid used. The AFM images show that the heights of roughness of the DPPC films cannot be the primary cause of the observed hysteresis because the heights are too small to cause the observed hystereses. It is believed that the hysteresis is due to the liquid film present right behind the three-phase solid surface/liquid drop/gas (vapour) contact line and the presence of Derjaguin pressure. The value of contact angle hysteresis depends on both the solid surface and liquid properties as well as on intermolecular interactions between them.  相似文献   

12.
The increased attention has been focused on the re-searches of soft materials proposed by Pierre-Gilles de Gennes, a Nobel Prize Laureate in Physics. A special issue of “Science” on soft surfaces was published in 2002 to review specific surface properti…  相似文献   

13.
The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements.  相似文献   

14.
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.  相似文献   

15.
In this article, the contact angle hysteresis (CAH) of acrylic glass is experimentally and theoretically studied through the compression-relaxation process of droplets by using a superhydrophobic surface with negligible CAH effect. In contrast to the existing technique in which the volume of the droplet changes during the measurement of CAH, this procedure is carried out at a constant volume of the droplet. By observing the base diameter (BD) and the contact angle (CA) of the droplet during the compression-relaxation process, the wetting behavior of the droplet can be divided into two regimes, the contact line withdrawal and the contact line pinning regimes, depending on the gap thickness (H) at the end of the compression process. During the compression process, both regimes possess similar droplet behavior; the contact line will move outward and the BD will expand while the CA remains at the advancing angle. During the relaxation process, the two regimes are significantly different. In the contact line withdrawal regime, the contact line will withdraw with the CA remaining at the receding angle. In the contact line pinning regime, however, the contact line will be pinned at the final position and the CA will decline to a certain value higher than the receding angle. Furthermore, the advancing pinning behavior can also be realized through a successive compression-relaxation process. On the basis of the liquid-induced defects model, Surface Evolver simulations are performed to reproduce the behavior of the droplet during the compression-relaxation process; both contact line withdrawal and pinning regimes can also be identified. The results of the experiment and simulation agree with each other very well.  相似文献   

16.
Young equation is the fundamental equation of wetting theory in which the connection among the surface tensions, \(\gamma _{{\varphi \psi }} \) and the contact angle, θ L, are given. The surface tension of solid surfaces, however, cannot be obtained directly from the Young equation. In this paper, the application of the individual representation theory is demonstrated for the determination of surface tensions of solids (or any phase pair) using experimentally obtained contact angle data. According to this approach, the state of the interfacial layers depends upon, by definition, the properties of the bulk phases in every heterogeneous system, and thus, it complements the traditional capillary theory.  相似文献   

17.
Silicon wafers have been silylated with VTMS (vinyltrimethoxysilane) and hydrolyzed. Subsequently, PVP (polyvinyl pyrrolidone) was grafted onto the silylated surface by two different techniques: the grafting-through (GT) and the grafting-onto techniques (GO). The measurement of contact angles along with the topography analysis by atomic force microscopy (AFM) has allowed monitoring the different stages of the process and the temporal evolution of polymer grafting. The results have demonstrated the feasibility of both methods of grafting but have shown that the GT method gives a higher density of polymer-grafted chains. The AFM technique in adequate liquid environments has been proven to permit the surface density of chains to be distinguished by both methods and to estimate the length of the resulting PVP chains.  相似文献   

18.
Contact angle measurements with a large number of liquids on the semi-fluorinated acryl polymer EGC-1700 films are reported. The surface tension was determined to be gammasv=13.84 mJ/m2 from contact angles of octamethylcyclotetrasiloxane (OMCTS) and decamethylcyclopentasiloxane (DMCPS). Inertness of these two liquids makes them ideal for determination of surface tension of low-energy fluoropolymers. On the other hand, contact angles of many other liquids deviated somewhat from a smooth contact angle pattern that represents the EGC-1700 surface tension. It is argued that noninertness of the molecules of these liquids gives rise to specific interactions with the polymer film, causing the deviations. Furthermore, contact angles of a series of n-alkanes (n-hexane to n-hexadecane) showed systematic deviations from this curve, similar to the trend observed for n-alkanes/Teflon AF 1600 systems studied earlier. Adsorption of vapor of short-chain liquids onto the polymer film caused their contact angles to fall above the gammasv=13.84 mJ/m2 curve, and a parallel alignment of molecules of the long-chain n-alkanes in the vicinity of the solid was the explanation for the deviation of their contact angles below it. It is found that vapor adsorption effect is more significant in the case of Teflon AF 1600, while the alignment of liquid molecules close to the surface is more pronounced for EGC-1700.  相似文献   

19.
The reliability of a recently developed solid-vapour and solid-liquid interfacial tension models has been investigated by applying them to predict liquid-vapour and liquid-liquid interfacial tension values. The impact of the geometrical molecular packing and the molecular orientations near the surface on the predicted values are discussed. The mutual solubility data are shown to be adequate for calculation of the interaction parameters in the solid-liquid model and a new equation, using this information, is developed for prediction of water-hydrocarbon interfacial tension. The model has been applied to recent data on water-methane-n-decane and water-methane-cyclohexane-n-decane interfacial tensions at elevated temperature and pressure and its reliability demonstrated. It is shown that the solid-liquid interfacial tension model is solely adequate for predicting the contact angle by applying it to mercury-water-benzene and stearic acid-water-n-decane systems.  相似文献   

20.
We have studied two types of topological substrates--the continuous solid substrates (CSS) and the discontinuous solid substrates (DSS)--by using the dissipative particle dynamics (DPD) method for a better understanding of the contact angle hysteresis on two such substrates. After the validation of DPD in the system, we found that DSS has a different distribution of the metastable states from that of CSS and that DSS has relatively larger contact angle hysteresis at lower temperature. Obtained results also show that CSS is more suitable for making an ultrahydrophobic or ultralyophobic surface than DSS from the point of view of dynamic wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号