首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Binuclear copper(II) complexes of thiosemicarbazones derived from cuminaldehyde (p-isopropyl benzaldehyde) and substituted thiosemicarbazides NH2NHC(S)NHR, where R = H, Me, Et or Ph have been synthesized and characterized. The ESR indicates that the dissociation of dimeric complex into mononuclear [Cu(L)Cl(DMSO)3] units in polar solvents like DMSO, where L = monoanionic thiosemicarbazone. The molecular ion peak in the LC-MS coincides with the formula weight of the complexes. The absorption titration studies revealed that each of these complexes is an avid binder to calf thymus-DNA. The apparent binding constants are in the order of 107–108 M−1. The nucleolytic cleavage activities of the ligands and their complexes were assayed on pUC18 plasmid DNA using gel electrophoresis in the presence and absence of H2O2. The ligands showed increased nuclease activity when administered as copper complexes. All these copper(II) complexes behave as an efficient chemical nucleases with hydrogen peroxide activation. These studies revealed that the complexes exhibit both oxidative and hydrolytic chemistry in DNA cleavage.  相似文献   

3.
Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-cyanopyridine (CNPy) with the formulas [(eta6-arene)RuCl2(L)] (L = CPI, eta6-arene = benzene (1), p-cymene (2), hexamethylbenzene (3); L = CNPy, eta6-arene = benzene (4), p-cymene (5), hexamethylbenzene (6)) have been prepared by our earlier methods. The molecular structure of [(eta6-C6Me6)RuCl2(CNPy)] (6) has been determined crystallographically. Analogous rhodium(III) complex [(eta5-C5Me5)RhCl2(CPI)] (7) has also been prepared and characterized. DNA interaction with the arene ruthenium complexes and the rhodium complex has been examined by spectroscopic and gel mobility shift assay; condensation of DNA and B-->Z transition have also been described. Arene ruthenium(II) and EPh3 (E = P, As)-containing arene ruthenium(II) complexes exhibited strong binding behavior, however, rhodium(III) complexes were found to be Topo II inhibitors with an inhibition percentage of 70% (7) and 30% (7a). Furthermore, arene ruthenium complexes containing polypyridyl ligands also act as mild Topo II inhibitors (10%, 3c and 40%, 3d) in contrast to their precursor complexes. Complexes 4-6 also show significant inhibition of beta-hematin/hemozoin formation activity.  相似文献   

4.
Interaction of chiral Ru(II) salen complexes (S)-1 and (R)-1 with Calf Thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, CD measurements, thermal denaturation study and cleavage studies by agarose gel electrophoresis. The DNA binding affinity of (S)-1 (6.25 × 103 M−1) was found to be greater than (R)-1 (3.0 × 103 M−1). The antimicrobial studies of these complexes on five different gram (+)/(−) bacteria and three different fungal organisms showed selective inhibition of the growth of gram (+) bacteria and were not affective against gram (−) and fungal organisms. Further, the (S)-1 enantiomer inhibited the growth of organisms to a greater extent as compared to (R)-1 enantiomer.  相似文献   

5.
The synthesis and structural characterization of two oxo-peroxo molybdenum(VI) complexes, [Mo(O)(O)2(PAA)]? (1) and [Mo(O)(O)2(PAH)]? (2), with phenylacetic acid (PAA) and 2-phenylacetylhydroxamic acid (PAHH) ligands have been accomplished. The coordination geometry of the oxo-peroxo molybdenum(VI) complexes is found to be pentagonal bipyramidal where, in both cases, the ligands are coordinated in bidentate fashion through oxygen atoms. The binding affinities of 1 and 2 with calf-thymus DNA (CT DNA) are determined using absorption spectroscopic measurements. The spectroscopic as well as cyclic voltammetric (CV) studies and viscosity measurements indicate that both complexes interact with CT DNA in the groove. The intrinsic binding constants are 5.2 × 104 M?1 and 7.3 × 104 M?1 for 1 and 2, respectively, from UV–vis studies. Complexes 1 and 2 show nuclease activity with plasmid DNA in the presence of H2O2. Concentration-dependent nuclease study suggests that 2 possesses higher ability to cleave plasmid DNA compared to 1. The experimental results of the binding of 1 and 2 with DNA are further supported by molecular docking studies.  相似文献   

6.
The rhenium(II) dinitrosyl and mononitrosyl complexes, i.e. [Re(NO)2(CN)4]·(Phen)2·2H2O (1) and PhenH[Re(NO)(CN)4(H2O)]·(Phen)·3H2O (2) have been isolated and characterized. The X-ray crystal structure of 2 reveals that Re(II) is octahedrally coordinated with one nitrosyl, four cyanides, and one water, with one phenanthroline protonated to compensate the charge of the Re(II) center. The crystal structure shows chemically significant non-covalent interactions like hydrogen bonding involving the uncoordinated water and ππ interactions between phenanthrolinium and phen. The structures of both complexes have been optimized by DFT. Absorption and emission spectral studies and viscosity measurements indicate that both 1 and 2 interact with calf thymus DNA through partial intercalation of DNA bases. The intrinsic-binding constants, obtained from UV–vis spectroscopic studies, are 1.2?×?104 and 7.2?×?104?M?1 for 1 and 2, respectively. Both 1 and 2 are capable of inducing cleavage of plasmid DNA in the presence of H2O2 to form the supercoiled form to nicked circular form. The spectroscopic results of DNA binding are supported by molecular docking studies.  相似文献   

7.
In the search for antitumor active metal complexes several ruthenium complexes have been reported to be promising. A series of mononuclear Ru(II) complexes, [Ru(T)2(S)]2+, where T?=?2,2′-bipyridine/1,10-phenanthroline and S?=?CH3-bitsz, Cl-bitsz, Br-bitsz, tmtsz, dmtsz, have been prepared and characterized by UV-Vis, IR, 1H-NMR, FAB-mass spectroscopy, and elemental analysis. The complexes were subjected to in vivo anticancer activity against a transplantable murine tumor cell line Ehrlich's ascitic carcinoma (EAC) and in vitro cytotoxic activity against human cancer cell line Molt 4/C8, CEM, and murine tumor cell line L1210. Ruthenium complexes showed promising biological activity especially in decreasing tumor volume and viable ascitic cell counts. Treatment with these complexes prolonged the life span of EAC-tumor-bearing mice by 10–48%. In vitro evaluation of these ruthenium complexes revealed cytotoxic activity from 0.21 to 24?µmol?L?1 against Molt 4/C8, 0.16–19?µmol?L?1 against CEM, and 0.75–32?µmol?L?1 against L1210 cell proliferation, depending on the nature of the compound.  相似文献   

8.
Cu(II) complexes of three tridentate ligands, L(1), L(2) and L(3), [L(1), N-((1H-imidazole-2-yl)methyl)-2-(pyridine-2-yl)ethanamine; L(2), N-((1-methyl-1H-imidazole-2-yl)methyl)-2-(pyridine-2-yl)ethanamine; L(3), 2-(pyridine-2-yl)-N-((pyridine-2-yl)methyl)ethanamine] respectively, were synthesized and characterized. The single crystal X-ray structure of complex 1 reveals the pseudo octahedral coordination geometry around the copper center. Absorption and fluorescence experimental evidence show good DNA binding propensity (in the order of 10(5) M(-1)) of the complexes. Thermal denaturation and circular dichroism (CD) analyses reveal minor structural changes of calf thymus (CT) DNA in presence of complexes and groove and/or surface binding of the complexes to CT-DNA. Kinetic DNA cleavage assay shows pseudo-first-order kinetic reaction between the complex and supercoiled (SC) DNA. In addition, mechanistic SC DNA cleavage results show higher DNA cleavage activity in presence of reducing agent, due to the presence of hydroxyl radicals. In vitro cytotoxicity assay of the complexes demonstrate that the complexes have low toxicity for different cancer cell lines and IC(50) values were between 37 and 156 μM.  相似文献   

9.
Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, (1)H NMR, (13)C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.  相似文献   

10.
The crystal structures of two copper(II) complexes of the cyclohexanecarboxylate ligand, namely [Cu(C6H11CO2)2(H2O)2]·H2O (1) and [Cu(dpyam)2(C6H11CO2)](NO3)·H2O (2) (C6H11CO2H = cyclohexanecarboxylic acid; dpyam = di-2-pyridylamine), have been determined by single-crystal X-ray analysis. Complex 1 contains the square-planar trans-CuO4 chromophore, while 2 shows the square pyramidal cis-distorted octahedral CuN4OO′ chromophore. Both complexes were found to show strong inhibitory activity against jack bean urease (IC50 = 1.75 and 8.57 μM for 1 and 2, respectively), when compared with acetohydroxamic acid (IC50 = 63.12 μM).  相似文献   

11.
[Cu(DAPT)2Cl]Cl·H2O and [Cu(DBM)(DAPT)Cl] [DAPT = 2,4-diamine-6-(pyrazin-2-yl)-1,3,5-triazine] were synthesized and characterized by IR and UV spectroscopy, elemental analysis, TG–DTA, molar conductivity, and LC–MS. The interaction with calf thymus DNA (ct-DNA) of the two complexes has been studied using UV spectra, fluorescent spectra, cyclic voltammetry, and viscosity measurements. The complexes interact with ct-DNA through classical intercalation. Fluorescence intensity changes of 1 and 2 in the absence and presence of ct-DNA have been investigated for quantitative determination of ct-DNA with the limit of detection of 3.8 and 7.7 ng mL?1, respectively. From the result, the two complexes are potentially sensitive DNA fluorescent probes.  相似文献   

12.
A new series of DNA binding 5,10,15-tri(N-methyl-4-pyridiniumyl)porphyrin (TrisMPyP)-platinum(II) conjugates was synthesized, in which different spacer ligands were used for appropriate coordination to platinum(II) complexes. Compound 9b exhibited in vivo antitumor activity (T/C%, 294) superior to cisplatin (T/C%, 184) against the leukemia L1210 cell line.  相似文献   

13.
A new series of ruthenium(II) N-heterocyclic carbene complexes [RuL1,2,3(p-cymene)Cl2] (3a–c) (where L is a N-heterocyclic carbene), have been synthesized via transmetalation. The new ruthenium(II)-NHC complexes were applied to transfer hydrogenation of acetophenone derivatives and aldehydes using 2-propanol as a hydrogen source and KOH as a co-catalyst. The results show that the corresponding alcohols could be obtained in good yield with high catalyst activity (up to 100%) under mild conditions. [RuL1(p-cymene)Cl2] (3a) is much more active than the other complexes in transfer hydrogenation. Reactions, catalyzed by 3a–c, showed the highest reaction rates and yields of alcohol when the substrates bear more electron-withdrawing substituents. All new compounds were characterized by IR, elemental analysis, LC–MS (ESI), and NMR spectroscopy.  相似文献   

14.
15.
A series of ruthenium complexes having the general form [Ru(bpy)(3-n)(CN-Me-bpy)(n)](PF(6))(2) (where bpy = 2,2'-bipyridine, CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, and n = 1-3 for complexes 1-3, respectively) have been synthesized and characterized using a variety of steady-state and nanosecond time-resolved spectroscopies. Electrochemical measurements indicate that the CN-Me-bpy ligand is significantly easier to reduce than the unsubstituted bipyridine (on the order of ~500 mV), implying that the lowest energy (3)MLCT (metal-to-ligand charge transfer) state will be associated with the CN-Me-bpy ligand(s) in all three compounds. Comparison of the Huang-Rhys factors derived from spectral fitting analyses of the steady state emission spectra of complexes 1-3 suggests all three compounds are characterized by excited-state geometries that are less distorted relative to their ground states as compared to [Ru(bpy)(3)](PF(6))(2); the effect of the more nested ground- and excited-state potentials is reflected in the unusually high radiative quantum yields (13% (1), 27% (2), and 40% (3)) and long (3)MLCT-state room-temperature lifetimes (1.6 μs, 2.6 μs, and 3.5 μs, respectively) for these compounds. Coupling of the π* system into the CN groups is confirmed by nanosecond step-scan IR spectra which reveal a ~40 cm(-1) bathochromic shift of the CN stretching frequency, indicative of a weaker CN bond in the (3)MLCT excited state relative to the ground state. The fact that the shift is the same for complexes 1-3 is evidence that, in all three complexes, the long-lived excited state is localized on a single CN-Me-bpy ligand rather than being delocalized over multiple ligands.  相似文献   

16.
A series of four polypyridyl Ru(II) complexes such as [Ru(L)4(PIP)]2+ and [Ru(L)4PPIP]2+ where L is 4-amino pyridine and Pyridine (PIP?=?2-phenylimidazo[4,5-f] [1, 10] phenanthroline), (PPIP?=?2-(4??-phenoxy-phenyl) imidazo[4,5-][1, 10]phenanthroline) have been synthesized and characterized by elemental analysis, physicochemical methods such as UV?Cvis, IR and NMR spectroscopic techniques. The DNA-binding behavior of these complexes was investigated by electronic absorption titrations, fluorescence spectroscopy, viscosity measurements and salt-dependent studies. The experimental results indicate that all these complexes can bind to DNA through an intercalation mode, the DNA-binding affinities of these complexes follow the order [Ru(4-APy)4(PPIP)]2+(1)?>?[Ru(Py)4PPIP]2+(2)?>?[Ru(4-APy)4(PIP)]2+(3)?>?[Ru(Py)4PIP]2+(4). Noticeably, these complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA. Further, all four complexes screened for their antimicrobial activity indicate that the complexes show appreciable activity against Escherichia coli and Neurospora Crassa. In addition, in the presence of Co2+, the emission of DNA-[Ru(L4)PPIP/PIP]2+ can be quenched and recovered by the addition of EDTA, which exhibited the DNA ??light switch?? properties.  相似文献   

17.
New mononuclear Ru(II) complexes [Ru(A)2(B)]2+, where A?=?2,2′-bipyridine/1,10-phenanthroline and B?=?3,4,5-tri-OCH3-DPC, 4-CH3-DPC, 4-N(CH3)2-DPC, 4-NO2-DPC, N-BITSZ, PTSZ and PINH, were prepared and characterized by spectroscopic methods. The in vitro cytotoxic activities of the complexes and their corresponding ligands were investigated against the human cancer T-lymphocyte cell lines molt 4/c8 and CEM and the murine tumor leukemia cell line L1210, human promyelocytic leukemia cells (HL-60) and Bel-7402 liver cancer cells by MTT assay. The complexes [Ru(A)2(B)]2+ (A?=?1,10-phenanthroline, B?=?3,4,5-tri-OCH3-DPC) exerts rather more potent activities against all of these cell lines, especially for CEM and L1210. Ru complexes and structure–activity relationships and anticancer mechanisms are also discussed.  相似文献   

18.
The new water-soluble ruthenium(II) chiral complexes [RuCpX(L)(L')](n+) (X = Cl, I. L = PPh3; L' = PTA, mPTA; L = L' = PTA, mPTA) (PTA = 1,3,5-triaza-7-phosphaadamantane; mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane) have been synthesized and characterized by NMR and IR spectroscopy and elemental analysis. The salt mPTA(OSO2CF3) was also prepared and fully characterized by spectroscopic techniques. X-ray crystal structures of [RuClCp(PPh3)(PTA)] (2), [RuCpI(PPh3)(PTA)] (3), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9) have been determined. The binding properties toward DNA of the new hydrosoluble complexes have been studied using the mobility shift assay. The ruthenium chloride complexes interact with DNA depending on the hydrosoluble phosphine bonded to the metal, while the corresponding compounds with iodide, [RuCpI(PTA)2] (1), [RuCpI(PPh3)(PTA)] (3), [RuCpI(mPTA)2](OSO2CF3)2 (6), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9), do not bind to DNA.  相似文献   

19.
In search of potential anticancer drug candidates in ruthenium complexes, a series of mononuclear ruthenium complexes of the type [Ru(phen)(2)(nmit)]Cl(2) (Ru1), [Ru(bpy)(2)(nmit)]Cl(2) (Ru2), [Ru(phen)(2)(icpl)]Cl(2) (Ru3), Ru(bpy)(2)(icpl)]Cl(2) (Ru4) (phen=1,10-phenanthroline; bpy=2,2'-bipyridine; nmit=N-methyl-isatin-3-thiosemicarbazone, icpl=isatin-3-(4-Cl-phenyl)thiosemicarbazone) and [Ru(phen)(2)(aze)]Cl(2) (Ru5), [Ru(bpy)(2)(aze)]Cl(2) (Ru6) (aze=acetazolamide) and [Ru(phen)(2)(R-tsc)](ClO(4))(2) (R=methyl (Ru7), ethyl (Ru8), cyclohexyl (Ru9), 4-Cl-phenyl (10), 4-Br-phenyl (Ru11), and 4-EtO-phenyl (Ru12), tsc=thiosemicarbazone) were prepared and characterized by elemental analysis, FTIR, (1)H-NMR and FAB-MS. Effect of these complexes on the growth of a transplantable murine tumor cell line (Ehrlich Ascites Carcinoma) and their antibacterial activity were studied. In cancer study the effect of hematological profile of the tumor hosts have also been studied. In the cancer study, the complexes Ru1-Ru4, Ru10 and Ru11 have remarkably decreased the tumor volume and viable ascitic cell count as indicated by trypan blue dye exclusion test (p<0.05). Treatment with the ruthenium complexes prolonged the lifespan of Ehrlich Ascites Carcinoma (EAC) bearing mice. Tumor inhibition by the ruthenium chelates was followed by improvements in hemoglobin, RBC and WBC values. All the complexes showed antibacterial activity, except Ru5 and Ru6. Thus, the results suggest that these ruthenium complexes have significant antitumor property and antibacterial activity. The results also reflect that the drug does not adversely affect the hematological profiles as compared to that of cisplatin on the host.  相似文献   

20.
A series of mixed-metal complexes coupling ruthenium light absorbers to platinum reactive metal sites through polyazine bridging ligands have been prepared of the form [(tpy)RuCl(BL)PtCl(2)](PF(6)) (BL = 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), 2,3-bis(2-pyridyl)benzoquinoxaline (dpb); tpy = 2,2':6',2' '-terpyridine). These systems possess electron-rich Ru metal centers bound to five polyazine nitrogens and one chloride ligand. This leads to complexes with low-energy Ru --> BL charge-transfer bands that are tunable with BL variation occurring at 544, 632, and 682 nm for dpp, dpq, and dpb, respectively. This tuning of the charge-transfer energy results from a stabilization of the BL(pi) orbitals in this series as evidenced by the cathodic shift in the first reduction of these complexes occurring at -0.50, -0.32, and -0.20 V vs Ag/AgCl, for dpp, dpq, and dpb, respectively. The chlorides bound to the Pt(II) center are substitutionally labile giving these complexes the ability to covalently bind to DNA. All three title bimetallics, [(tpy)RuCl(BL)PtCl(2)](PF(6)), avidly bind double-stranded DNA with t(1/2) = 1-2 min, substantially reducing the migration of DNA through an agarose gel. Details of the synthetic methods, FAB MS data, spectroscopic and electrochemical properties, and DNA binding studies are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号