首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the secondary radical pair, P865(+)Q(A)-, in fully deuterated and Zn-substituted reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides R-26 has been determined by high-time resolution and high-field electron paramagnetic resonance (EPR). A computer analysis of quantum beat oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the orientation of the various magnetic tensors of P865(+)Q(A)- with respect to a magnetic reference frame. The orientation of the g-tensor of P865(+) in an external reference system is adapted from a single-crystal W-band (95 GHz) EPR study [Klette, R.; T?rring, J. T.; Plato, M.; M?bius, K.; B?nigk, B.; Lubitz, W. J. Phys. Chem. 1993, 97, 2015-2020]. Thus, we obtain the three-dimensional structure of the charge separated state P865(+)Q(A)- on a nanosecond time scale after light-induced charge separation. Comparison with crystallographic data reveals that the position of the quinone is essentially the same as that in the X-ray structure. However, the head group of Q(A)- has undergone a 60 degrees rotation in the ring plane relative to its orientation in the crystal structure. Analysis suggests that the two different QA conformations are functionally relevant states which control the electron-transfer kinetics from Q(A)- to the secondary quinone acceptor QB. It appears that the rate-limiting step of this reaction is a reorientation of Q(A)- in its binding pocket upon light-induced reduction. The new kinetic model accounts for striking observations by Kleinfeld et al. who reported that electron transfer from Q(A)- to QB proceeds in RCs cooled to cryogenic temperature under illumination but does not proceed in RCs cooled in the dark [Kleinfeld, D.; Okamura, M. Y.; Feher, G. Biochemistry 1984, 23, 5780-5786].  相似文献   

2.
The geometry of the secondary radical pair P700(+)A1(-), in photosystem I (PSI) from the deuterated and 15N-substituted cyanobacterium Synechococcus lividus, has been determined by high time resolution electron paramagnetic resonance (EPR), performed at three different microwave frequencies. Structural information is extracted from light-induced quantum beats observed in the transverse magnetization of P700(+)A1(-) at early times after laser excitation. A computer analysis of the two-dimensional Q-band experiment provides the orientation of the various magnetic tensors of with respect to a magnetic reference frame. The orientation of the cofactors of the primary donor in the g-tensor system of is then evaluated by analyzing time-dependent X-band EPR spectra, extracted from a two-dimensional data set. Finally, the cofactor arrangement of P700(+)A1(-) in the photosynthetic membrane is deduced from angular-dependent W-band spectra, observed for a magnetically aligned sample. Thus, the orientation of the g-tensor of P700(+) with respect to a chlorophyll based reference system could be determined. The angle between the g1(z) axis and the chlorophyll plane normal is found to be 29 +/- 7 degrees, while the g1(y) axis lies in the chlorophyll plane. In addition, a complete structural model for the reduced quinone acceptor, A1(-), is evaluated. In this model, the quinone plane of is found to be inclined by 68 +/- 7 degrees relative to the membrane plane, while the P700(+)-A1(-) axis makes an angle of 35 +/- 6 degrees with the membrane normal. All of these values refer to the charge separated state, observed at low temperatures, where forward electron transfer to the iron-sulfur centers is partially blocked. Preliminary room temperature studies of P700(+)A1(-), employing X-band quantum beat oscillations, indicate a different orientation of A1(-) in its binding pocket. A comparison with crystallographic data provides information on the electron-transfer pathway in PSI. It appears that quantum beats represent excellent structural probes for the short-lived intermediates in the primary energy conversion steps of photosynthesis.  相似文献   

3.
Photosystem I (PSI) is one of two photosynthetic reaction centers present in plants, algae, and cyanobacteria and catalyzes the reduction of ferredoxin and the oxidation of cytochrome c or plastocyanin. The PSI primary chlorophyll donor, which is oxidized in the primary electron-transfer events, is a heterodimer of chl a and a' called P700. It has been suggested that protein relaxation accompanies light-induced electron transfer in this reaction center (Dashdorj, N.; Xu, W.; Martinsson, P.; Chitnis, P. R.; Savikhin, S. Biophys. J. 2004, 86, 3121. Kim, S.; Sacksteder, C. A.; Bixby, K. A.; Barry, B. A. Biochemistry 2001, 40, 15384). To investigate the details of electron transfer and relaxation events in PSI, we have employed several experimental approaches. First, we report a pH-dependent viscosity effect on P700+ reduction; this result suggests a role for proton transfer in the PSI electron-transfer reactions. Second, we find that changes in hydration alter the rate of P700+ reduction and the interactions of P700 with the protein environment. This result suggests a role for bound water in electron transfer to P700+. Third, we present evidence that deuteration of the tyrosine aromatic side chain perturbs the vibrational spectrum, associated with P700+ reduction. We attribute this result to a linkage between CH-pi interactions and electron transfer to P700+.  相似文献   

4.
When the primary electron-donation pathway from the water-oxidation complex in photosystem II (PS II) is inhibited, chlorophyll (Chl(Z) and Chl(D)), beta-carotene (Car) and cytochrome b(559) are alternate electron donors that are believed to function in a photoprotection mechanism. Previous studies have demonstrated that high-frequency EPR spectroscopy (at 130 GHz), together with deuteration of PS II, yields resolved Car(+) and Chl(+) EPR signals (Lakshmi et al. J. Phys. Chem. B 2000, 104, 10 445-10 448). The present study describes the use of pulsed high-frequency EPR spectroscopy to measure the location of the carotenoid and chlorophyll radicals relative to other paramagnetic cofactors in Synechococcus lividus PS II. The spin-lattice relaxation rates of the Car(+) and Chl(+) radicals are measured in manganese-depleted and manganese-depleted, cyanide-treated PS II; in these samples, the non-heme Fe(II) is high-spin (S = 2) and low-spin (S = 0), respectively. The Car(+) and Chl(+) radicals exhibit dipolar-enhanced relaxation rates in the presence of high-spin (S = 2) Fe(II) that are eliminated when the Fe(II) is low-spin (S = 0). The relaxation enhancements of the Car(+) and Chl(+) by the non-heme Fe(II) are smaller than the relaxation enhancement of Tyr(D)(*) and P(865)(+) by the non-heme Fe(II) in PS II and in the reaction center from Rhodobactersphaeroides, respectively, indicating that the Car(+)-Fe(II) and Chl(+)-Fe(II) distances are greater than the known Tyr(D)(*)-Fe(II) and P(865)(+)-Fe(II) distances. The Car(+) radical exhibits a greater relaxation enhancement by Fe(II) than the Chl(+) radical, consistent with Car being an earlier electron donor to P(680)(+) than Chl. On the basis of the distance estimates obtained in the present study and by analogy to carotenoid-binding sites in other pigment-protein complexes, possible binding sites are discussed for the Car cofactors in PS II. The relative location of Car(+) and Chl(+) radicals determined in this study provides valuable insight into the sequence of electron transfers in the alternate electron-donation pathways of PS II.  相似文献   

5.
The distances and orientations among reactant centers in the active site of coenzyme B12-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized in the Co(II)-product radical pair state by using X-band electron paramagnetic resonance (EPR) and two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopies in the disordered solid state. The unpaired electron spin in the product radical is localized on C2. Our approach is based on the orientation-selection created in the EPR spectrum of the biradical by the axial electron-electron dipolar interaction. Simulation of the EPR line shape yielded a best-fit Co(II)-C2 distance of 9.3 A. ESEEM spectroscopy performed at four magnetic field values addressed the hyperfine coupling of the unpaired electron spin on C2 with 2H in the C5' methyl group of 5'-deoxyadenosine and in the beta-2H position at C1 of the radical. Global ESEEM simulations (over the four magnetic fields) were weighted by the orientation dependence of the EPR line shape. A Nelder-Mead direct search fitting algorithm was used to optimize the simulations. The results lead to a partial model of the active site, in which C5' is located a perpendicular distance of 1.6 A from the Co(II)-C2 axis, at distances of 6.3 and 3.5 A from Co(II) and C2, respectively. The van der Waals contact of the C5'-methyl group and C2 indicates that C5' remains close to the radical species during the rearrangement step. The C2-Hs-C5' angle including the strongly coupled hydrogen, Hs, and the C5'-Hs orientation relative to the C1-C2 axis are consistent with a linear hydrogen atom transfer coordinate and an in-line acceptor p-orbital orientation. The trigonal plane of the C2 atom defines sub-spaces within the active site for C5' radical migration and hydrogen atom transfers (side of the plane facing Co(II)) and amine migration (side of the plane facing away from Co(II)).  相似文献   

6.
Subpicosecond time-resolved absorption measurements at 77 K on two reaction center (RC) mutants of Rhodobacter capsulatus are reported. In the D(LL) mutant the D helix of the M subunit has been substituted with the D helix from the L subunit, and in the D(LL)-FY(L)F(M) mutant, three additional mutations are incorporated that facilitate electron transfer to the M side of the RC. In both cases the helix swap has been shown to yield isolated RCs that are devoid of the native bacteriopheophytin electron carrier HL (Chuang, J. I.; Boxer, S. G.; Holten, D.; Kirmaier, C. Biochemistry 2006, 45, 3845-3851). For D(LL), depending whether the detergent Deriphat 160-C or N-lauryl-N,N-dimethylamine-N-oxide (LDAO) is used to suspend the RCs, the excited state of the primary electron donor (P*) decays to the ground state with an average lifetime at 77 K of 330 or 170 ps, respectively; however, in both cases the time constant obtained from single-exponential fits varies markedly as a function of the probe wavelength. These findings on the D(LL) RC are most easily explained in terms of a heterogeneous population of RCs. Similarly, the complex results for D(LL)-FY(L)F(M) in Deriphat-glycerol glass at 77 K are most simply explained using a model that involves (minimally) two distinct populations of RCs with very different photochemistry. Within this framework, in 50% of the D(LL)-FY(L)F(M) RCs in Deriphat-glycerol glass at 77 K, P* deactivates to the ground state with a time constant of approximately 400 ps, similar to the deactivation of P* in the D(LL) mutant at 77 K. In the other 50% of D(LL)-FY(L)F(M) RCs, P* has a 35 ps lifetime and decays via electron transfer to the M branch, giving P+HM- in high yield (> or =80%). This result indicates that P* --> P(+)H(M)(-) is roughly a factor of 2 faster at 77 K than at 295 K. In alternative homogeneous models the rate of this M-side electron-transfer process is the same or up to 2-fold slower at low temperature. A 2-fold increase in rate with a reduction in temperature is the same behavior found for the overall L-side process P* --> P(+)H(L)(-) in wild-type RCs. Our results suggest that, as for electron transfer on the L side, the M-side electron-transfer reaction P* --> P(+)H(M)(-) is an activationless process.  相似文献   

7.
When the superoxide radical O(2)(?-) is generated on reaction of KO(2) with water in dimethyl sulfoxide, the decay of the radical is dramatically accelerated by inclusion of quinones in the reaction mix. For quinones with no or short hydrophobic tails, the radical product is a semiquinone at much lower yield, likely indicating reduction of quinone by superoxide and loss of most of the semiquinone product by disproportionation. In the presence of ubiquinone-10, a different species (I) is generated, which has the EPR spectrum of superoxide radical. However, pulsed EPR shows spin interaction with protons in fully deuterated solvent, indicating close proximity to the ubinquinone-10. We discuss the nature of species I, and possible roles in the physiological reactions through which ubisemiquinone generates superoxide by reduction of O(2) through bypass reactions in electron transfer chains.  相似文献   

8.
Photoinduced electron transfer and geminate recombination are studied for the systems rhodamine 3B (R3B(+)) and rhodamine 6G (R6G(+)), which are cations, in neat neutral N,N-dimethylaniline (DMA). Following photoexcitation of R3B(+) or R6G(+) (abbreviated as R(+)), an electron is transferred from DMA to give the neutral radical R and the cation DMA(+). Because the DMA hole acceptor is the neat solvent, the forward transfer rate is very large, approximately 5x10(12) s(-1). The forward transfer is followed by geminate recombination, which displays a long-lived component suggesting several percent of the radicals escape geminate recombination. Spectrally resolved pump-probe experiments are used in which the probe is a "white" light continuum, and the full time-dependent spectrum is recorded with a spectrometer/charge-coupled device. Observations of stimulated emission (excited state decay-forward electron transfer), the R neutral radical spectrum, and the DMA(+) radical cation spectrum as well as the ground-state bleach recovery (geminate recombination) make it possible to unambiguously follow the electron transfer kinetics. Theoretical modeling shows that the long-lived component can be explained without invoking hole hopping or spin-forbidden transitions.  相似文献   

9.
We report on the effects of water activity and surrounding viscosity on electron transfer reactions taking place within a membrane protein: the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides. We measured the kinetics of charge recombination between the primary photoxidized donor (P(+)) and the reduced quinone acceptors. Water activity (aW) and viscosity (eta) have been tuned by changing the concentration of cosolutes (trehalose, sucrose, glucose, and glycerol) and the temperature. The temperature dependence of the rate of charge recombination between the reduced primary quinone, Q(A)(-), and P(+) was found to be unaffected by the presence of cosolutes. At variance, the kinetics of charge recombination between the reduced secondary quinone (Q(B)(-)) and P(+) was found to be severely influenced by the presence of cosolutes and by the temperature. Results collected over a wide eta-range (2 orders of magnitude) demonstrate that the rate of P(+)Q(B)(-) recombination is uncorrelated to the solution viscosity. The kinetics of P(+)Q(B)(-) recombination depends on the P(+)Q(A)(-)Q(B) <--> P(+)Q(A)Q(B)(-) equilibrium constant. Accordingly, the dependence of the interquinone electron transfer equilibrium constant on T and aW has been explained by assuming that the transfer of one electron from Q(A)(-) to Q(B) is associated with the release of about three water molecules by the RC. This implies that the interquinone electron transfer involves at least two RC substates differing in the stoichiometry of interacting water molecules.  相似文献   

10.
Protonated peptides containing histidine or arginine residues and a free carboxyl group (His-Ala-Ile, His-Ala-Leu, Ala-His-Leu, Ala-Ala-His-Ala-Leu, His-Ala-Ala-Ala-Leu, and Arg-Ala-Ile) form stable anions upon collisional double electron transfer from Cs atoms at 50 keV kinetic energies. This unusual behavior is explained by hidden rearrangements occurring in peptide radical intermediates formed by transfer of the first electron. The rearrangements occur on a approximately 120 ns time scale determined by the radical flight time. Analysis of the conformational space for (His-Ala-Ile + H)(+) precursor cations identified two major conformer groups, 1a(+)-1m(+) and 5a(+)-5h(+) , that differed in their H-bonding patterns and were calculated to collectively account for 39% and 60%, respectively, of the gas-phase ions. One-electron reduction in 1a(+) and 5a(+) triggers exothermic hydrogen atom migration from the terminal COOH group onto the His imidazole ring, forming imidazoline radical intermediates. The intermediate from 5a is characterized by its charge and spin distribution as a novel cation radical-COO(-) salt bridge. The intermediate from 1a undergoes spontaneous isomerization by imidazoline N-H migration, re-forming the COOH group and accomplishing exothermic isomerization of the initial (3H)-imidazole radical to a (2H)-imidazole radical. An analogous unimolecular isomerization in simple imidazole and histidine radicals requires activation energies of 150 kJ mol(-1), and its occurrence in 1a and 5a is due to the promoting effect of the proximate COOH group. The rearrangement is substantially reduced in Ala-Leu-His due to an unfavorable spatial orientation of the imidazole and COOH groups and precluded in the absence of a free carboxyl group in His-Ala-Leu amide. In contrast to His-Ala-Ile and Arg-Ala-Ile, protonated Lys-Ala-Ile does not produce stable anions upon double electron transfer. The radical trapping properties of histidine residues are discussed.  相似文献   

11.
The core structure of the photosynthetic reaction center is quasisymmetric with two potential pathways (called A and B) for transmembrane electron transfer. Both the pathway and products of light-induced charge separation depend on local electrostatic interactions and the nature of the excited states generated at early times in reaction centers isolated from Rhodobacter sphaeroides. Here transient absorbance measurements were recorded following specific excitation of the Q(y)() transitions of P (the special pair of bacteriochlorophylls), the monomer bacteriochlorophylls (B(A) and B(B)), or the bacteriopheophytins (H(A) and H(B)) as a function of both buffer pH and detergent in a reaction center mutant with the mutations L168 His to Glu and L170 Asn to Asp in the vicinity of P and B(B). At a low pH in any detergent, or at any pH in a nonionic detergent (Triton X-100), the photochemistry of this mutant is faster than, but similar to, wild type (i.e. electron transfer occurs along the A-side, 390 nm excitation is capable of producing short-lived B-side charge separation (B(B)(+)H(B)(-)) but no long-lived B(B)(+)H(B)(-) is observed). Certain buffering conditions result in the stabilization of the B-side charge separated state B(B)(+)H(B)(-), including high pH in the zwitterionic detergent LDAO, even following excitation with low energy photons (800 or 740 nm). The most striking result is that conditions giving rise to stable B-side charge separation result in a lack of A-side charge separation, even when P is directly excited. The mechanism that links B(B)(+)H(B)(-) stabilization to this change in the photochemistry of P in the mutant is not understood, but clearly these two processes are linked and highly sensitive to the local electrostatic environment produced by buffering conditions (pH and detergent).  相似文献   

12.
This mini review presents a general comparison of structural and functional peculiarities of three types of photosynthetic reaction centers (RCs)--photosystem (PS) II, RC from purple bacteria (bRC) and PS I. The nature and mechanisms of the primary electron transfer reactions, as well as specific features of the charge transfer reactions at the donor and acceptor sides of RCs are considered. Comparison of photosynthetic RCs shows general similarity between the core central parts of all three types, between the acceptor sides of bRC and PS II, and between the donor sides of bRC and PS I. In the latter case, the similarity covers thermodynamic, kinetic and dielectric properties, which determine the resemblance of mechanisms of electrogenic reduction of the photooxidized primary donors. Significant distinctions between the donor and acceptor sides of PS I and PS II are also discussed. The results recently obtained in our laboratory indicate in favor of the following sequence of the primary and secondary electron transfer reactions: in PS II (bRC): Р(680)(Р(870)) → Chl(D1)(В(А)) → Phe(bPhe) → Q(A); and in PS I: Р(700) → А(0А)/A(0B) → Q(A)/Q(B).  相似文献   

13.
Physicochemical properties of the covalently cross-linked tyrosine-histidine-Cu(B) (Tyr-His-Cu(B)) unit, which is a minimal model complex [M(II)-BIAIPBr]Br (M = Cu(II), Zn(II)) for the Cu(B) site of cytochrome c oxidase, were investigated with steady-state and transient absorption measurements, UV resonance Raman (UVRR) spectroscopy, X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The pH dependency of the absorption spectra reveals that the pK(a) of the phenolic hydroxyl is ca. 10 for the Cu(II) model complex (Cu(II)-BIAIP) in the ground state, which is similar to that of p-cresol (tyrosine), contrary to expectations. The bond between Cu(II) and nitrogen of cross-linked imidazole cleaves at pH 4.9. We have successfully obtained UVRR spectra of the phenoxyl radical form of BIAIPs and have assigned bands based on the previously reported isotope shifts of Im-Ph (2-(1-imidazoyl)-4-methylphenol) (Aki, M.; Ogura, T.; Naruta, Y.; Le, T. H.; Sato, T.; Kitagawa, T. J. Phys. Chem. A 2002, 106, 3436-3444) in combination with DFT calculations. The upshifts of the phenoxyl vibrational frequencies for 8a (C-C stretching), 7a' (C-O stretching), and 19a, and the Raman-intensity enhancements of 19b, 8b, and 14 modes indicate that UVRR spectra are highly sensitive to imidazole-phenol covalent linkage. Both transient absorption measurements and EPR spectra suggest that the Tyr-His-Cu(B) unit has only a minor effect on the electronic structure of the phenoxyl radical form, although our experimental results appear to indicate that the cross-linked Tyr radical exhibits no EPR. The role of the Tyr-His-Cu(B) unit in the enzyme is discussed in terms of the obtained spectroscopic parameters of the model complex.  相似文献   

14.
Mammalian nitric oxide synthase (NOS) is a flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide. Information about the relative alignment of the heme and FMN domains of NOS is important for understanding the electron transfer between the heme and FMN centers, but no crystal structure data for NOS holoenzyme are available. In our previous work [Astashkin, A. V.; Elmore, B. O.; Fan, W.; Guillemette, J. G.; Feng, C. J. Am. Chem. Soc. 2010, 132, 12059-12067], the distance between the imidazole-coordinated low-spin Fe(III) heme and FMN semiquinone in a human inducible NOS (iNOS) oxygenase/FMN construct has been determined by pulsed electron paramagnetic resonance (EPR). The orientation of the Fe-FMN radius vector, R(Fe-FMN), with respect to the heme g-frame was also determined. In the present study, pulsed electron-nuclear double resonance (ENDOR) investigation of the deuterons at carbons C2 and C5 in the deuterated coordinated imidazole was used to determine the relative orientation of the heme g-frame and molecular frame, from which R(Fe-FMN) can be referenced to the heme molecular frame. Numerical simulations of the ENDOR spectra showed that the g-factor axis corresponding to the low-field EPR turning point is perpendicular to the heme plane, whereas the axis corresponding to the high-field turning point is in the heme plane and makes an angle of about 80° with the coordinated imidazole plane. The FMN-heme domain docking model obtained in the previous work was found to be in qualitative agreement with the combined experimental results of the two pulsed EPR works.  相似文献   

15.
The thermodynamics and kinetics of light-induced electron transfer in bacterial photosynthetic RCs are sensitive to physiologically important lipids (phosphatidylcholine, cardiolipin and phosphatidylglycerol) in the environment. The analysis of the temperature-dependence of the rate of the P(+)Q(A)(-)Q(B)-->P(+)Q(A)Q(B)(-) interquinone electron transfer revealed high enthalpy change of activation in zwitterionic or neutral micelles and vesicles and low enthalpy change of activation in vesicles constituted of negatively charged phospholipids. The entropy change of activation was compensated by the changes of enthalpy, thus the free energy change of activation ( approximately 500 meV) did not show large variation in vesicles of different lipids.  相似文献   

16.
Stable free radical formation in fructose single crystals X-irradiated at room temperature was investigated using Q-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three main crystallographic planes allowed an unambiguous determination of 12 proton HFC tensors. From the EIE studies, these hyperfine interactions were assigned to six different radical species, labeled F1-F6. Two of the radicals (F1 and F2) were studied previously by Vanhaelewyn et al. [Vanhaelewyn, G. C. A. M.; Pauwels, E.; Callens, F. J.; Waroquier, M.; Sagstuen, E.; Matthys, P. J. Phys. Chem. A 2006, 110, 2147.] and Tarpan et al. [Tarpan, M. A.; Vrielinck, H.; De Cooman, H.; Callens, F. J. J. Phys. Chem. A 2009, 113, 7994.]. The other four radicals are reported here for the first time and periodic density functional theory (DFT) calculations were used to aid their structural identification. For the radical F3 a C3 carbon centered radical with a carbonyl group at the C4 position is proposed. The close similarity in HFC tensors suggests that F4 and F5 originate from the same type of radical stabilized in two slightly different conformations. For these radicals a C2 carbon centered radical model with a carbonyl group situated at the C3 position is proposed. A rather exotic C2 centered radical model is proposed for F6.  相似文献   

17.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

18.
The excited states of a structurally well-determined photosystem II (PSII) reaction center are obtained using an effective Hamiltonian for the interaction between the Q(y) states. The latter are calculated using the time-dependent density functional theory (DFT) method in DFT-optimized geometries, but with conserved side group orientations. Of particular importance is the orientation of the vinyl group of ring I. Couplings are calculated using actual transition charge distributions via the INDO/S model. Good agreement with experimental spectra is obtained. The lowest excited state is mainly located on the inactive B-side, but with a large component on P(A) too, making charge separation to H(A) possible at low temperature. The "trap state" and triplet state are localized on the inactive B-side. Since the spin singlet Q(y) states of the reaction center are all within a rather small energy range, the state with the highest component of B(A)*, on the blue side of the Q(y) absorption, has a rather high Boltzmann population at room temperature. The charge-transfer states, however, have a rather large spread and cannot be calculated accurately at present. The orientation of the phytyl chains is important and has as a consequence that the energy for the charge-separated B(A)+ H(A)- state is significantly lower than the corresponding state on the B-side. It follows that the B(A)* and P(A)* states are both possible origins for a fast charge separation in PSII.  相似文献   

19.
Chlorophyll (Chl) a', the C13(2)-epimer of Chl a, is one of the two Chl molecules constituting the primary electron donor (P700) of photosystem (PS) I of a thermophilic cyanobacterium Synechococcus elongatus. To examine whether PS I of other oxygenic photosynthetic organisms in general contain one Chl a' molecule in P700, the pigment composition of thylakoid membranes and PS I preparations isolated from red algae Porphyridium purpureum and Cyanidium caldarium was examined by reversed-phase HPLC with particular attention to Chl a' and phylloquinone (PhQ), the secondary electron acceptor of PS I. The two red algae contained one Chl a' molecule at the core part of PS I. In PS I of C. caldarium, two menaquinone-4 (MQ-4) molecules were detected in place of PhQ used by higher plants and cyanobacteria. The 1:2:1 stoichiometry among Chl a', PhQ (MQ-4) and P700 in PS I of the red algae indicates that one Chl a' molecule universally exists in PS I of oxygenic photosynthetic organisms, and two MQ-4 molecules are associated with PS I of C. caldarium.  相似文献   

20.
It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with d-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8alpha of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8alpha. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号