首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid and highly reproducible nonreducing agarose gel electrophoresis (NRAGE) of von Willebrand Factor (vWF) multimers was performed using a thermostated minigel apparatus that monitors and precisely controls internal gel temperature. The substitution of lithium dodecyl sulfate (LiDS) for sodium dodecyl sulfate (SDS) allowed electrophoresis to be performed below the 16 degrees C Krafft point of SDS and facilitated NRAGE of vWF over the entire range of 0-35 degrees C. Internal gel temperature was regulated by a thermocouple probe inserted directly into the gel during electrophoresis which interfaced with a thermopilot that continually measures and adjusts temperature to within +/- 0.5 degrees C. At 10 degrees C operative temperature, NRAGE at 1.5% agarose concentration was completed in 20 min at 250 V. Electrophoresis could be performed in only 10 min at 500 V, but at such high voltages, localized temperature fluctuations as much as 6 degrees C resulted in perturbation of banding patterns in those vicinities. In the optimized method, both high molecular weight multimers and proteolytic fragments of vWF were separable suggesting clinical applicability of this system for the diagnosis of von Willebrand Disease and thrombotic thrombocytopenic purpura.  相似文献   

2.
Kirzek DM  Rick ME 《Electrophoresis》2001,22(5):946-949
A method for evaluating the activity of the von Willebrand factor (vWF) protease is described, and a clinical application is illustrated. The procedure utilizes gel electrophoresis, Western blotting, and luminographic detection methods to evaluate the distribution of vWF multimers before and after incubation of clinical samples under conditions that favor proteolysis by this enzyme. Physiologically, the high-molecular-weight multimers of vWF are cleaved by the vWF protease under conditions of high shear stress in parts of the arterial circulation; cleavage of vWF multimers is also observed after exposure of vWF to denaturing agents in vitro and thus can serve as a laboratory test for the activity of the protease. vWF protease activity is decreased or absent in patients with thrombotic thrombocytopenic purpura due to an inhibiting autoantibody, and this leads to high levels of noncleaved vWF and to life-threatening thrombosis, thrombocytopenia and anemia. The assay evaluates the activity of the protease by assessing the cleavage of vWF multimers after patient plasmas are incubated in vitro under denaturing conditions. With the use of these electrophoresis and Western blotting techniques, patient plasmas can be rapidly assessed for the activity of the vWF protease which may aid in the treatment strategy for these patients.  相似文献   

3.
Abnormalities in plasma von Willebrand factor (vWF) concentration and function result in von Willebrand disease (vWD). The diagnosis requires a battery of tests such as screening procedures, confirmatory tests, phenotypic characterization, and genotyping. The phenotypic testing (multimer pattern analysis) is important in order to subclassify the hereditary and the acquired forms of vWD. Only few laboratories are skilled to perform this analysis. The extreme range of protein size from 250 kDa monomer to over 20 000 kDa multimers requires a time‐consuming procedure (3–4 days) and presents many technical difficulties. To standardize the method and to overcome technical difficulties, we developed a rapid and sensitive semi‐automated method to visualize the multimeric structure of vWF. The semi‐automated method we present performs the electrophoresis of patient's plasma in 120 min on a precast gel. Gels are suitable for the G26 Interlab instrumentation. After gel blotting, the method allows visualization of the vWF multimer pattern directly on the membrane. We reduced the time required from 72 to 8 h and we propose this test for the first level screening of vWF multimer deficiency.  相似文献   

4.
Photodynamic therapy (PDT) produces reactive species that alter vascular wall biology and vessel wall proteins. In this study, we examined platelet adhesion to PDT-treated (photosensitizer = Photofrin; fluence 100 J/cm2; lambda = 630 nm) extracellular matrix (ECM), fibrinogen, von Willebrand factor (vWF) and collagen Types I and III, under flow conditions in a recirculating perfusion chamber. Platelet adhesion was quantified by image analysis. The effect of PDT on vWF was assessed by measuring the binding of domain-specific antibodies to treated vWF. PDT significantly decreased platelet adhesion to the ECM, fibrinogen and vWF. However, PDT of collagen resulted in significantly increased platelet adhesion, with large aggregate formation. PDT affected mostly the A1 (glycoprotein [GP]-Ib-binding site), A2 and A3 (collagen-binding site) domains of vWF but not the D'-D3 (factor VIII-binding site) and B-C1 (GP-IIb/IIIa-binding site) domains. In conclusion, PDT can alter the ECM, resulting in decreased platelet adhesion. However, vessels with high collagen content, such as veins and small arteries, may become increasingly prone to thrombosis. The results of this study may thus play a role in understanding the thrombogenic properties and mechanisms of vascular PDT.  相似文献   

5.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

6.
Fractionation of DNA ladders by gel electrophoresis is limited by the progressive compressing of the long DNA end of a ladder. Improvement in the resolution of this DNA is achieved by use of the following two-step electrophoresis. Initially, the DNA ladder is fractionated by conventional constant field agarose gel electrophoresis. Subsequently, gel electrophoresis is performed in the reverse direction by pulsing the electrical field (PFGE). A newly developed type of pulsing is used, which causes inversion of a double-stranded DNA ladder: the distance migrated increases as the length of the DNA molecule increases. Thus, the resolution of DNA bands continues to increase during the PFGE. These two stages of electrophoresis are serially repeated. Eventually, both the short and the long DNA ends of the ladder migrate out of the gel while a selected region of the ladder undergoes progressive increase in resolution during back-and-forth migration. Improved resolution of DNA bands is achieved, without a known limit.  相似文献   

7.
Lipopolysaccharide (LPS) and lipooligosaccharide (LOS) are important antigenic and integral components of the outer membrane of Gram-negative bacteria. Alteration or heterogeneity of LPS/LOS structure is most often assessed by alteration of electrophoretic band profiles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In order to discern minor differences in the electrophoretic profile of closely spaced bands, particularly the low molecular weight bands of LOS, optimum resolution is required. Unfortunately, many publications of LPS/LOS in polyacrylamide gels show a diffuse, smeared pattern without discernible bands. We report here a formulation for polyacrylamide gels that reproducibly yields LPS/LOS bands with sharp resolution. A key feature of this formulation is the use of a separate comb gel containing electrode buffer layered on top of the conventional stacking gel.  相似文献   

8.
Recent advances in protein sequence analysis now permit the determination of partial N-terminal and internal primary structure from low picomole quantities of protein. The major remaining hurdles to sequence analysis of small amounts of protein are the identification, isolation, and handling of microgram and submicrogram quantities of protein. The technique of two-dimensional electrophoresis using immobilized pH gradient isoelectric focusing circumvents many of these problems. However, poor correlation between the first and second dimension have prevented use of this technique for the identification of some proteins which can only be assayed prior to the denaturing conditions used in the second dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis procedure. An improved method is presented which allows correlation of the native biological activity (first dimension) to a silver stained protein (second dimension) with a high degree of confidence.  相似文献   

9.
To determine simultaneously the relative molecular mass (Mr) of a native oligomeric protein, and the number and Mr of its subunits, a method using two-dimensional electrophoresis was developed. To determine the Mr of a native oligomeric protein, pore gradient gel electrophoresis was performed for the first dimension. Native proteins were dissociated into their subunits by sodium dodecyl sulphate (SDS) in a gel slice, then applied to SDS polyacrylamide gel electrophoresis for the second dimension to determine the Mr of subunits. The advantage, accuracy, limitations and application of the method are discussed.  相似文献   

10.
Slab gel electrophoresis is the most widely used separation method for DNA fragments, proteins and carbohydrates, and miniaturization of this process is expected to provide fast, inexpensive and convenient analyses. However, two problems concerning the miniaturization of gel electrophoresis have to be solved:the separation performance and spatial resolution of the detector. We demonstrated that the separation performance was improved by using a discontinuous gel in which a concentrating gel was used to stack the sample to a sharp band, and using thermal lens microscope (TLM), which is highly sensitive and has a spatial resolution of micron level even in light scattering matrices as a gel, such sharpened separated bands were successfully detected. In this paper, we developed a miniaturized slab gel electrophoresis apparatus, demonstrated high speed separation of DNA fragments, and applied it to genetic diagnosis of coronary heart disease.  相似文献   

11.
To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A “Counter Free‐Flow” elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high‐resolution separation of a complex protein mixture can be achieved on this system using SDS‐PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48–96 fractions over a mass range of ~10–150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 μL/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 μg per channel and reduced resolution.  相似文献   

12.
Two-dimensional electrophoresis of membrane proteins   总被引:1,自引:0,他引:1  
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.  相似文献   

13.
Lipopolysaccharides (LPSs) were analyzed by polyacrylamide gel electrophoresis (PAGE) in the presence of sodium deoxycholate (DOC) or sodium dodecyl sulphate (SDS) and the results obtained compared. Two-dimensional PAGE of the S form of LPS revealed that, with SDS, bands which appeared to be single after the one-dimensional experiment were resolved into several bands after two-dimensional electrophoresis. In the presence of DOC, however, a diagonal of single bands was obtained in one-dimensional electrophoresis indicating optimum resolution. The high quality of resolution by DOC-PAGE was constant for amounts of LPS up to 20 micrograms. Finally, DOC-PAGE does not require boiling of the samples in DOC, which may be an advantage over SDS-PAGE.  相似文献   

14.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.  相似文献   

15.
Horizontal two-dimensional (2-D) electrophoresis with immobilized pH gradients (IPG) in the first dimension for buffer soluble proteins and for complex proteins solubilized in the presence of Nonidet P-40 (G?rg et al., Electrophoresis 1987, 8, 45-51), has been extended to analyze basic proteins of yeast cells focused under non-equilibrium and equilibrium conditions. Transient state isoelectric focusing (IEF) in IPG gels revealed sample smearing and background staining, displaying horizontal streaks in the resultant 2-D patterns. Inclusion of 0.5% carrier ampholytes (CA) to the IPG gel (IPG-CA), resulted in the formation of many sharp protein bands after transient state IEF with resultant distinct spots in the 2-D patterns; however, resolution was poor and the gel contained heavy background staining. With prolonged focusing time, background staining disappeared and there was less difference in the final steady state IEF patterns obtained with IPG and IPG-CA. Reduction of the Immobiline concentration to one third the manufacturer's recommended amount did not improve IEF resolution with respect to streaking and background staining under either transient state or equilibrium conditions. In general, spot intensities were less on 2-D gels using diluted IPG gels than with "standard" IPG gels. Optimization of 2-D electrophoresis with IPGs in the first dimension was strongly related to IEF conditions. The use of IPG gels focused to equilibrium should not only improve inter-gel reproducibility and resolution but also the quality of the final 2-D patterns with respect to background staining and horizontal streaking.  相似文献   

16.
Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu2+ with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton–acid–urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu2+ chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu2+ ions.  相似文献   

17.
Seelert H  Krause F 《Electrophoresis》2008,29(12):2617-2636
Due to its unmatched resolution, gel electrophoresis is an indispensable tool for the analysis of diverse biomolecules. By adaptation of the electrophoretic conditions, even fragile protein complexes as parts of intracellular networks migrate through the gel matrix under sustainment of their integrity. If the thickness of such native gels is significantly increased compared to the analytical version, also high sample loads can be processed. However, the cage-like network obstructs an in-depth analysis for deciphering structure and function of protein complexes and other species. Consequently, the biomolecules have to be removed from the gel matrix into solution. Several approaches summarized in this review tackle this problem. While passive elution relies on diffusion processes, electroelution employs an electric field to force biomolecules out of the gel. An alternative procedure requires a special electrophoresis setup, the continuous elution device. In this apparatus, molecules migrate in the electric field until they leave the gel and were collected in a buffer stream. Successful isolation of diverse protein complexes like photosystems, ATP-dependent enzymes or active respiratory supercomplexes and some other bioparticles demonstrates the versatility of preparative electrophoresis. After liberating particles out of the gel cage, numerous applications are feasible. They include elucidation of the individual components up to high resolution structures of protein complexes. Therefore, preparative electrophoresis can complement standard purification methods and is in some cases superior to them.  相似文献   

18.
Acidic oligosaccharides derived from glycosaminoglycan heparin were separated by polyacrylamide gradient gel electrophoresis (PAGE). The gel could be visualized using Alcian Blue dye to give a pattern of highly resolved, well defined bands. The particular banding pattern obtained was the result of a heparinase catalyzed depolymerization which afforded oligosaccharide products that differed in size by one disaccharide unit. The separated oligosaccharides could be recovered prior to staining by electroelution onto a positively charged nylon membrane by a semi-dry transfer procedure. Subsequent elution and quantitative recovery of individual oligosaccharides from the membrane was achieved. By using multiple membrane layers a second separation dimension was obtained, resulting in increased oligosaccharide purity proportional to transfer depth. Preparative gradient polyacrylamide gel electrophoresis followed by semi-dry electro-transfer and recovery represents a novel method for the preparation of homogeneous acidic oligosaccharides.  相似文献   

19.
A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 × 1016 cm− 3 to 1 × 1018 cm− 3.  相似文献   

20.
Adenylate kinases (AKs) are ubiquitous monomeric phosphotransferases catalyzing the reversible reaction, AMP + MgATP = ADP + MgADP, which plays a pivotal role in the energetic metabolism. In vertebrates, six AK isoforms are known. In this work, we report the detection of many AK isoforms directly on gel or NC after separation by denaturing electrophoresis and electroblotting, by an optimized protocol for the enzyme detection. The method allows to clarify the apparent MW of most of those AK isozymes that follow the cited reaction, especially onto NC where bands are sharper due to the absence of protein diffusion. In contrast, GTP:AMP phosphotransferases are not detectable. AK activity from many sources can be detected in both its reaction courses; ATP production appears as dark-blue bands, while ADP formation appears as nonfluorescent bands over a fluorescent background, under long-wavelength UV light. We show that nondenaturing gel electrophoresis is not the first choice for AK activity detection. Our method is different from the preceding reports on AK activity detection in bacteria after native polyacrylamide gel separations, in the absence of SDS or methanol. The procedure is also quantitative, allowing to determine the amount of enzyme present in samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号