首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Electric and magnetic separation have been in use for many years in the mineral and chemical industries. The development of new technologies1 in the field of magnetic separation, such as magnetohydrostatic separation (MHS), high-gradient magnetic separation (HGMS), wet high-intensity magnetic separation (WHIMS), and magnetic filtration (MF), has generated increasing interest in the2–4 behavior of similar methods such as wet dielectric separation5 dielectrophoretic levitation and fractionation, and dielectric filtration6–7 - all using non-uniform electric fields and polarization. In all these cases dielectric particles in a heterogeneous electric or magnetic field are subjected to the action of ponderomotive (gradient) forces.  相似文献   

2.
Particle condensation in nonconducting electro- and magnetorheological suspensions under the action of external electric (magnetic) field was theoretically studied. It was shown that the phase separation of the particle system of the gas-liquid type is preceded by the formation of fairly long chain aggregates. Phase transition occurs as a condensation of these chains as a result of their polar electric (magnetic) interaction. This fact denotes the essential difference between the phase separation in the considered suspensions of polarizable particles from the phase transitions in ferro- and Seignette-electric fluids, i.e., colloidal suspensions of monodomain particles with permanent intrinsic moments, as well as from the transitions in molecular systems, where the condensation occurs in the ensemble of individual particles (molecules).  相似文献   

3.
Fang Zhang  Dongqing Li 《Electrophoresis》2014,35(20):2922-2929
A new microfluidic method of particle separation was proposed and studied theoretically in this paper. This method is based on the induced charge electro‐osmotic flow (ICEOF) and polarizability of dielectric particles. In this method, a pair of metal plates is embedded on the side channel walls to create a region of circulating flows under applied electric field. When a dielectric particle enters this region, the vortices produced by ICEOF around the particle will interact with the circulating flows produced by the metal plates. Such hydrodynamic interaction influences the particle's trajectory, and may result in the particle being trapped in the flow circulating zone or passing through this flow circulating zone. Because the hydrodynamic interaction is sensitive to the applied electric field, and the polarizability and the size of the particles, separation of different particles can be realized by controlling these parameters. Comparing with electrophoresis and dielectrophoresis methods, this strategy presented in this paper is simple and sensitive.  相似文献   

4.
Kremser L  Blaas D  Kenndler E 《Electrophoresis》2004,25(14):2282-2291
A review about the application of electrophoretic methods in the capillary format for the investigation of large biological assemblies like viruses, bacteria, yeast or entire mammalian cells is given. These entities are of a size ranging between some nanometers and tens of micrometers. They can form colloidal solutions or dispersions and move under the influence of an electric field. They are separated by zone electrophoresis according to their different electrophoretic velocity, and characterized by the electrophoretic mobility, which is easily determinable in free solution in capillaries or in other microdevices. As the charge of these particles, when being amphoteric, is pH-dependent, isoelectric focusing can also be carried out and the capillary format is increasingly being employed for their separation and determination of pI values. Furthermore, interactions with ligands can be assessed by various modes of affinity capillary electrophoresis. Capillary zone electrophoresis has thus become a valuable tool for investigation of large macromolecular assemblies in the field of biochemistry, clinical chemistry, toxicology, and nutrition chemistry amongst many others.  相似文献   

5.
A new dielectrophoretic particle separation method is demonstrated and examined in the following experimental study. Current electrodeless dielectrophoretic (DEP) separation techniques utilize insulating solid obstacles in a DC or low-frequency AC field, while this novel method employs an oil droplet acting as an insulating hurdle between two electrodes. When particles move in a non-uniform DC field locally formed by the droplet, they are exposed to a negative DEP force linearly dependent on their volume, which allows the particle separation by size. Since the size of the droplet can be dynamically changed, the electric field gradient, and hence DEP force, becomes easily controllable and adjustable to various separation parameters. By adjusting the droplet size, particles of three different diameter sizes, 1 microm, 5.7 microm and 15.7 microm, were successfully separated in a PDMS microfluidic chip, under applied field strength in the range from 80 V cm-1 to 240 V cm-1. A very effective separation was realized at the low field strength, since the electric field gradient was proved to be a more significant parameter for particle discrimination than the applied voltage. By utilizing low strength fields and adaptable field gradient, this method can also be applied to the separation of biological samples that are generally very sensitive to high electric potential.  相似文献   

6.
To gain insight into the mechanisms of size-dependent separation of microparticles in capillary zone electrophoresis (CZE), sulfated polystyrene latex microspheres of 139, 189, 268, and 381 nm radius were subjected to CZE in Tris-borate buffers of various ionic strengths ranging from 0.0003 to 0.005, at electric field strengths of 100-500 V cm(-1). Size-dependent electrophoretic migration of polystyrene particles in CZE was shown to be an explicit function of kappaR, where kappa(-1) and rare the thickness of electric double layer (which can be derived from the ionic strength of the buffer) and particle radius, respectively. Particle mobility depends on kappaR in a manner consistent with that expected from the Overbeek-Booth electrokinetic theory, though a charged hairy layer on the surface of polystyrene latex particles complicates the quantitative prediction and optimization of size-dependent separation of such particles in CZE. However, the Overbeek-Booth theory remains a useful general guide for size-dependent separation of microparticles in CZE. In accordance with it, it could be shown that, for a given pair of polystyrene particles of different sizes, there exists an ionic strength which provides the optimal separation selectivity. Peak spreading was promoted by both an increasing electric field strength and a decreasing ionic strength. When the capillary is efficiently thermostated, the electrophoretic heterogeneity of polystyrene microspheres appears to be the major contributor to peak spreading. Yet, at both elevated electric field strengths (500 V/cm) and the highest ionic strength used (0.005), thermal effects in a capillary appear to contribute significantly to peak spreading or can even dominate it.  相似文献   

7.
Particle separation is a fundamental operation in the areas of biology and physical chemistry. A variety of force fields have been used to separate particles in microfluidic devices, among which electric field may be the most popular one due to its general applicability and adaptability. So far, however, electrophoresis‐based separations have been limited primarily to batchwise processes. Dielectrophoresis (DEP)‐based separations require in‐channel micro‐electrodes or micro‐insulators to produce electric field gradients. This article introduces a novel particle separation technique in DC electrokinetic flow through a planar double‐spiral microchannel. The continuous separation arises from the cross‐stream dielectrophoretic motion of particles induced by the non‐uniform electric field inherent to curved channels. Specifically, particles are focused by DEP to one sidewall of the first spiral, and then dielectrophoretically deflected toward the other sidewall of the second spiral at a particle‐dependent rate, leading to focused particle streams along different flow paths. This DEP‐based particle separation technique is demonstrated in an asymmetric double‐spiral microchannel by continuously separating a mixture of 5/10 μm particles and 3/5 μm particles.  相似文献   

8.
Choi S  Park JK 《Lab on a chip》2005,5(10):1161-1167
This paper presents a novel microfluidic device for dielectrophoretic separation based on a trapezoidal electrode array (TEA). In this method, particles with different dielectric properties are separated by the device composed of the TEA for the dielectrophoretic deflection of particles under negative dielectrophoresis (DEP) and poly(dimethylsiloxane)(PDMS) microfluidic channel with a sinuous and expanded region. Polystyrene microparticles are exposed to an electric field generated from the TEA in the microfluidic channel and are dielectrophoretically focused to make all of them line up to one sidewall. When these particles arrive at the region of another TEA for dielectrophoretic separation, they are separated having different positions along the perpendicular direction to the fluid flow due to their different dielectrophoretic velocities. To evaluate the separation process and performance, both the effect of the flow rate on dielectrophoretic focusing and the influence of the number of trapezoidal electrodes on dielectrophoretic separation are investigated. Now that this method utilizes the TEA as a source of negative DEP, non-specific particle adhering to the electrode surface can be prevented; conventional separation approaches depending on the positive DEP force suffer from this problem. In addition, since various particle types are continuously separated, this method can be easily applicable to the separation and analysis of various dielectric particles with high particle recovery and selectivity.  相似文献   

9.
This paper reports a microfluidic method of continuous separation of marine algae and particles by DC dielectrophoresis. The locally non-uniform electric field is generated by an insulating PDMS triangle hurdle fabricated within a PDMS microchannel. Both the particles and algae are subject to negative DEP forces at the hurdle where the gradient of local electric-field strength is the strongest. The DEP force acting on the particle or the algae depends on particles’ or algae’s volume, shape and dielectric properties. Thus the moving particles and algae will be repelled to different streamlines when passing the hurdle. In this way, combined with the electroosmotic flow, continuous separation of algae of two different sizes, and continuous separation of polystyrene particles and algae with similar volume but different shape were achieved. This first demonstration of DC DEP separation of polystyrene particles and algae with similar sizes illustrates the great influence of dielectric properties on particle separation and potentials for sample pretreatment.  相似文献   

10.
Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insulating obstacles in the channel or flow field in order to perform separation or trapping. This emerging field of dielectrophoresis is commonly termed DC insulator dielectrophoresis (DC-iDEP), insulator-based dielectrophoresis (iDEP), or electrodeless dielectrophoresis (eDEP). In many microdevices, this form of dielectrophoresis has advantages over traditional AC-DEP, including single material microfabrication, remotely positioned electrodes, and reduced fouling of the test region. DC-iDEP applications have included disease detection, separation of cancerous cells from normal cells, and separation of live from dead bacteria. However, there is a need for a critical report to integrate these important research findings. The aim of this review is to provide an overview of the current state-of-art technology in the field of DC-iDEP for the separation and trapping of inert particles and cells. In this article, a review of the concepts and theory leading to the manipulation of particles via DC-iDEP is given, and insulating obstacle geometry designs and the characterization of device performance are discussed. This review compiles and compares the significant findings obtained by researchers in handling and manipulating particles.  相似文献   

11.
Particle–particle separation in biotechnology has gained interest over the years due to the large number of processes that yield particle mixtures. Direct isolation of the product-containing particles is a logical and efficient downstream processing route in these processes. Dissolved-air flotation is applicable for these separations when the particles that require separation have different interactions with the air bubbles and/or differ in aggregation behaviour.

In this work, model particles consisting of micrometer-sized protein-coated polystyrene particles were used to investigate the requirements for the application of dissolved-air flotation for particle–particle separation in biotechnology. These model particles have heterogeneous surfaces with surface groups (brushes) that extend out into the solution. Therefore, steric (or brush) repulsion and so-called hydrophobic interactions between the particles need to be taken into account. The flotation behaviour of the protein-coated particles was related to the size of the aggregates and the foaming behaviour of the proteins. Prediction of their aggregation behaviour was performed on the basis of calculations of the Van der Waals, electrostatic, hydrophobic and brush interactions. The brush interaction force proves to be essential for the prediction of the aggregation behaviour of the particles.  相似文献   


12.
It is common to operate equilibrium-based separation methods, such as distillation and extraction, as multistage unit operations, in which equilibrium is presumably achieved within each stage. Two rate-based separation processes, free electrophoresis and magnetic particle separation, have now been operated in multistage mode. Preparative free electrophoresis of particles and solutes has resisted scale-up and is confined to a narrow range of ionic compositions. Natural convection induced in electrophoresis buffers by Ohmic heating has been a strong deterrent and has led to such measures as radial electrophoresis in Couette flow, free-flow electrophoresis, low-gravity electrophoresis, density gradient electrophoresis, and reorienting density gradient electrophoresis, to name a few. The short vertical electrophoresis path exploited in the last-mentioned forms the basis for multistage electrophoresis. A thin-layer countercurrent distribution apparatus was designed and constructed so that up to 20 fractions could be collected on the basis of electrophoretic mobility by applying an electric field. The mixture to be separated starts in a bottom cavity, and successive top cavities collect fractions as separand particles or molecules are electrophoresed upward out of the bottom cavity. Mathematical models of this process were developed, and experiments were performed to verify the predictions of the models by collecting and counting particles in each cavity after fractionation.  相似文献   

13.
Church C  Zhu J  Xuan X 《Electrophoresis》2011,32(5):527-531
Dielectrophoresis has been widely used to focus, trap, concentrate, and sort particles in microfluidic devices. This work demonstrates a continuous separation of particles by size in a serpentine microchannel using negative dielectrophoresis. Depending on the magnitude of the turn-induced dielectrophoretic force, particles travelling electrokinetically through a serpentine channel either migrate toward the centerline or bounce between the two sidewalls. These distinctive focusing and bouncing phenomena are utilized to implement a dielectrophoretic separation of 1 and 3 μm polystyrene particles under a DC-biased AC electric field of 880 V/cm on average. The particle separation process in the entire microchannel is simulated by a numerical model.  相似文献   

14.
Recently, we generalized our lattice model of gel electrophoresis to study the net velocity of particles being pulled by a high-intensity electric field through an arbitrary distribution of immobile obstacles (Gauthier, M. G., Slater, G. W., J. Chem. Phys. 2002, 117, 6745-6756). In this article, we show how the high-field version of our model can be used to compare the velocity of particles with different electric charges and/or physical sizes. We then investigate specific two-dimensional distributions of obstacles that can be used to separate particles, e.g., in a microfluidic device. More precisely, we compare the velocity of differently charged or sized analytes in sieving, trapping and deflecting systems to model various electrophoretic separation techniques. In particular, we study the nonlinear effects present in ratchet systems and how they can be combined with time-asymmetric pulsed fields to provide new modes of separation.  相似文献   

15.
Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. In this review, we summarize the separation techniques that have been initially used for this purpose. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. Further development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes.  相似文献   

16.
P Zellner  M Agah 《Electrophoresis》2012,33(16):2498-2507
Concentration of biological specimens that are extremely dilute in a solution is of paramount importance for their detection. Microfluidic chips based on insulator-based DEP (iDEP) have been used to selectively concentrate bacteria and viruses. iDEP biochips are currently fabricated with glass or polymer substrates to allow for high electric fields within the channels. Joule heating is a well-known problem in these substrates and can lead to decreased throughput and even device failure. In this work, we present, for the first time, highly efficient trapping and separation of particles in DC iDEP devices that are fabricated on silicon using a single-etch-step three-dimensional microfabrication process with greatly improved heat dissipation properties. Fabrication in silicon allows for greater heat dissipation for identical geometries and operating conditions. The 3D fabrication allows for higher performance at lower applied potentials. Thermal measurements were performed on both the presented silicon chips and previously published PDMS devices comprised of microposts. Trapping and separation of 1 and 2 μm polystyrene particles was demonstrated. These results demonstrate the feasibility of high-performance silicon iDEP devices for the next generation of sorting and concentration microsystems.  相似文献   

17.
Yalcin SE  Sharma A  Qian S  Joo SW  Baysal O 《Electrophoresis》2010,31(22):3711-3718
Various particle manipulations including enrichment, movement, trapping, separation, and focusing by floating electrodes attached to the bottom wall of a straight microchannel under an imposed DC electric field have been experimentally demonstrated. In contrast to a dielectric microchannel possessing a nearly uniform surface charge (or ζ potential), the metal strip (floating electrode) is polarized under the imposed electric field, resulting in a nonuniform distribution of the induced surface charge with a zero net surface charge along the floating electrode's surface, and accordingly induced-charge electroosmotic flow near the metal strip. The induced induced-charge electroosmotic flow can be regulated by controlling the strength of the imposed electric field and affects both the hydrodynamic field and the particle's motion. By using a single floating electrode, charged particles could be locally concentrated in a section of the channel or in an end-reservoir and move toward either the anode or the cathode by controlling the strength of the imposed electric field. By using double floating electrodes, negatively charged particles could be concentrated between the floating electrodes, subsequently squeezed to a stream flowing in the center region of the microchannel toward the cathodic reservoir, which can be used to focus particles.  相似文献   

18.
Dielectrophoresis is an electrokinetic phenomenon that utilizes an asymmetric electric field to separate analytes based on differences in their polarizabilities relative to that of the suspending medium. One dielectrophoretic device architecture that offers interesting possibilities for particle transport without the use of external flow is the ratchet geometry. This paper describes the fabrication and evaluation of a novel dielectrophoretic ratchet device using a series of fine particles as test probes. The asymmetrical electric field required to selectively transport target analytes was produced using electroformed electrodes which offer the possibility of reducing convective heating and which can be used to construct a device in which all particles located within the fluidic channel are exposed to the applied field. Initial tests of this device were conducted using magnetite and polystyrene fine particles to demonstrate selective particle collection and a separation based on differences in the electrical properties of the analytes employed.  相似文献   

19.
Dielectrophoresis is the electrokinetic movement of particles due to polarization effects in the presence of non-uniform electric fields. In insulator-based dielectrophoresis (iDEP) regions of low and high electric field intensity, i.e. non-uniformity of electric field, are produced when the cross-sectional area of a microchannel is decreased by the presence of electrical insulating structures between two electrodes. This technique is increasingly being studied for the manipulation of a wide variety of particles, and novel designs are continuously developed. Despite significant advances in the area, complex mixture separation and sample fractionation continue to be the most important challenges. In this work, a microchannel design is presented for carrying out direct current (DC)-iDEP for the separation of a mixture of particles. The device comprises a main channel, two side channels and two sections of cylindrical posts with different diameters, which will generate different non-uniformities in the electric field on the main channel, designed for the discrimination and separation of particles of two different sizes. By applying an electric potential of 1000 V, a mixture of 1 and 4 μm polystyrene microspheres were dielectrophoretically separated and concentrated at the same time and then redirected to different outlets. The results obtained here demonstrate that, by carefully designing the device geometry and selecting operating conditions, effective sorting of particle mixtures can be achieved in this type of multi-section DC-iDEP devices.  相似文献   

20.
崔嘉轩  刘璐  李东浩  朴相范 《色谱》2021,39(11):1157-1170
微纳尺度物质的分离和分选在精准医学、材料科学和单细胞分析等研究中至关重要。精准、高效和快速的分离微纳尺度物质能够为癌症的早期诊断、生物样品检测和细胞筛选提供重要帮助,其中基于外加场分离技术的分离微纳尺度物质因可以对微纳尺度物质高效在线分离和分选,被广泛应用于微纳米颗粒、外泌体以及生物细胞的分离工作中,而目前多数外加场分离技术存在装备繁琐和样品消耗大等问题。微流控技术是一种通过制作微通道和微流控芯片操纵微小流体对微纳尺度样品组分进行分离的技术,因具有快速检测、高通量、在线分离、集成性高、成本低等优势现被应用于微纳尺度物质分离分析中,是一种微纳尺度物质分离的有效方法,通过在微流控芯片上设计不同的通道及外部配件提高主动场对微纳尺度物质分离效率。外加场分离技术与微流控技术联用可以实现微纳尺度物质的无损、高效、在线分离。该综述主要概述了近年来在微流控芯片上依托流动场、电场、磁场及声场等外加场分离技术来提高对微纳尺度物质分离效率的研究现状,并将各个外力场对单细胞、微颗粒等微纳尺度物质的分离进行分类介绍,总结各自的优缺点及发展应用,最后展望了外加场分离技术与微流控技术联用在应用于癌细胞的早期筛查、精确分离微尺度物质领域的未来发展前景,并提出联用技术的优势和未来应用等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号