首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biologically uncommon D-aspartyl (D-Asp) residues have been detected in proteins of various tissues of elderly humans. The presence of D-Asp has been explained as a result of the racemization of L-Asp (denoted as Asp) in the protein of inert tissues. We have previously suggested that the racemization of Asp may depend on the conformation of the peptide chain. However, the nature of the peptide conformation that affects the D-Asp formation has not yet been examined. Here we report the kinetics of Asp racemization in two model peptides, (Asp-Leu)(15) and (Leu-Asp-Asp-Leu)(8)-Asp, which form beta-sheet structures and alpha-helical structures, respectively. For the beta-sheet structures, the activation energy of racemization of Asp residues was 27.3 kcal mol(-1), the racemization rate constant at 37 degrees C was 2.14x10(-2) per year and the time required to reach a D/L ratio of 0.99 at 37 degrees C was 122.6 years as estimated from the Arrhenius equation. For the alpha-helical structures, the activation energy of racemization was 18.4 kcal mol(-1), the racemization rate constant 20.02x10(-2) per year and the time 13.1 year. These results suggest that Asp residues inserted in alpha-helical peptides are more sensitive to racemization than Asp residues inserted in peptides adopting beta-sheet structures. The results clearly indicate that the racemization rate of Asp residues in peptides depends on the secondary structure of the host peptide.  相似文献   

2.
Gold nanoparticles having sequential alternating amphiphilic peptide chains, Phe-(Leu-Glu)8, on the surface have been prepared. We describe structural control of the amphiphilic peptide coated gold nanoparticle assembly by a conformational transition of the surface peptides. Under the acidic condition, the conformation of the surface amphiphilic peptide was converted to a beta-sheet structure from an aggregated alpha-helix by incubation. Under this condition, the amphiphilic peptide coated gold nanoparticles formed a nanosheet assembly. The plasmon absorption maximum of the gold nanoparticles shifted to a shorter wavelength with the formation of the beta-sheet assembly of the surface peptide. This suggests that the structure of the peptide coated gold nanoparticle assembly could be controlled by the conformational transition of the surface peptide. Furthermore, the core gold nanoparticle could be fixed in the beta-sheet assembly in the state that stood alone. This system may be useful for novel molecular devices that exhibit quantized properties.  相似文献   

3.
This paper reports the design, synthesis, and characterization of a family of cyclic peptides that mimic protein quaternary structure through beta-sheet interactions. These peptides are 54-membered-ring macrocycles comprising an extended heptapeptide beta-strand, two Hao beta-strand mimics [JACS 2000, 122, 7654] joined by one additional alpha-amino acid, and two delta-linked ornithine beta-turn mimics [JACS 2003, 125, 876]. Peptide 3a, as the representative of these cyclic peptides, contains a heptapeptide sequence (TSFTYTS) adapted from the dimerization interface of protein NuG2 [PDB ID: 1mio]. 1H NMR studies of aqueous solutions of peptide 3a show a partially folded monomer in slow exchange with a strongly folded oligomer. NOE studies clearly show that the peptide self-associates through edge-to-edge beta-sheet dimerization. Pulsed-field gradient (PFG) NMR diffusion coefficient measurements and analytical ultracentrifugation (AUC) studies establish that the oligomer is a tetramer. Collectively, these experiments suggest a model in which cyclic peptide 3a oligomerizes to form a dimer of beta-sheet dimers. In this tetrameric beta-sheet sandwich, the macrocyclic peptide 3a is folded to form a beta-sheet, the beta-sheet is dimerized through edge-to-edge interactions, and this dimer is further dimerized through hydrophobic face-to-face interactions involving the Phe and Tyr groups. Further studies of peptides 3b-3n, which are homologues of peptide 3a with 1-6 variations in the heptapeptide sequence, elucidate the importance of the heptapeptide sequence in the folding and oligomerization of this family of cyclic peptides. Studies of peptides 3b-3g show that aromatic residues across from Hao improve folding of the peptide, while studies of peptides 3h-3n indicate that hydrophobic residues at positions R3 and R5 of the heptapeptide sequence are important in oligomerization.  相似文献   

4.
In search of the link between sequence and conformation in protein structures, we perform molecular dynamics analysis of the effect of stereochemical mutation in end-protected octa-alanine Ac-Ala8-NHMe from poly-L to an alternating-L,D structure. The mutation has a dramatic effect, transforming the peptide from a condition of extreme sensitivity to one of extreme insensitivity to solvent. Examining the molecular folds of poly-L and alternating-L,D structure in atomistic detail, we find them to differ in the relationship between peptide dipolar interactions at the local and nonlocal levels, either conflicting or harmonious depending upon the chain stereochemistry. The stereochemical transformation of interpeptide electrostatics from a condition of conflict to one of harmony explains the long-standing puzzle of why poly-L and alternating-L,D peptides strongly differ in properties such as "stiffness" and solvent sensitivity. Furthermore, it is possible that poly-L stereochemistry is also the fulcrum of protein sensitivity to the effects of amino acid side-chain structures via dielectric arbitrations in interpeptide electrostatics. Indeed the evidence is accumulating that the amino acid side chains differing in alpha-helix and beta-sheet propensities also differ in their desolvating effects in the adjacent and nearest-neighbor peptides and thus possibly in the solvent screening of peptide dipolar interactions.  相似文献   

5.
6.
Insight into the details of protein misfolding diseases requires a detailed understanding of the conformation and dynamics of multistrand beta-sheet aggregates. Here, we report an isotope-edited FTIR study of a model peptide directed at the elucidation of residue-level details of the structure and mechanism of a beta-sheet aggregate. A series of specifically isotope-labeled derivatives of a short peptide (H1) derived from residues 109 through 122 of the prion protein PrPC have been synthesized and characterized by FTIR. On the basis of the analysis of variable temperature FTIR spectra of these peptides in solution, the organization of strands within the beta-sheets has been determined; at equilibrium, the strands form a beta-sheet in which the hydrophobic core (112-122) participates in the sheet structure, resulting in the alignment of residue 117 in all of the strands. The peptides initially form a kinetically trapped intermediate beta-sheet, with a distribution of strand alignments, which can be rearranged into the stable equilibrium conformation by an annealing cycle. These observations are discussed in terms of the biological significance of residue 117 of the prion protein and the mechanism of beta-aggregate nucleation in prion proteins.  相似文献   

7.
The mechanisms by which amyloidogenic peptides and proteins form soluble toxic oligomers remain elusive. We have studied the formation of partially ordered tetramers and well-ordered octamers of an amyloidogenic hexapeptide NFGAIL (residues 22-27 of the human islet amyloid polypeptide) in our previous work. Continuing the effort, we here probe the beta-sheet elongation process by a combined total of 2.0 micros molecular dynamics simulations with explicit solvent. In a set of 10 simulations with the peptides restrained to the extended conformation, we observed that the main growth mode was elongation along the beta-sheet hydrogen bonds through primarily a two-stage process. Driven by hydrophobic forces, the peptides initially attached to the surface of the ordered oligomer, moved quickly to the beta-sheet edges, and formed stable beta-sheet hydrogen bonds. Addition of peptides to the existing oligomer notably improved the order of the peptide aggregate in which labile outer layer beta-sheets were stabilized, which provides good templates for further elongation. These simulations suggested that elongation along the beta-sheet hydrogen bonds occurs at the intermediate stage when low-weight oligomers start to form. We did not observe significant preference toward either parallel or antiparallel beta-sheets at the elongation stage for this peptide. In another set of 10 unrestrained simulations, the dominant growth mode was disordered aggregation. Taken together, these results offered a glimpse at the molecular events leading to the formation of ordered and disordered low-weight oligomers.  相似文献   

8.
As part of our continuing study of the effects of the turn sequence on the conformational stability as well as the mechanism of folding of a beta-sheet structure, we have undertaken a parallel investigation of the solution structure, conformational stability, and kinetics of refolding of the beta-sheet VFIVDGOTYTEV(D)PGOKILQ. The latter peptide is an analogue of the original Gellman beta-sheet VFITS(D)PGKTYTEV(D)PGOKILQ, wherein the TS(D)PGK turn sequence in the first hairpin has been replaced by VDGO. Thermodynamics studies revealed comparable conformational stability of the two peptides. However, unlike the Gellman peptide, which showed extremely rapid refolding of the first hairpin, early kinetic events associated with the refolding of the corresponding hairpin in the VDGO mutant were found to be significantly slower. A detailed study of the conformation of the modified peptide suggested that hydrophobic interactions might be contributing to its stability. Accordingly, we surmise that the early kinetic events are sensitive to whether the formation of the hairpin is nucleated at the turn or by sequestering of the hydrophobic residues across the strand, before structural rearrangements to produce the nativelike topology. Nucleation of the hairpin at the turn is expected to be intrinsically rapid for a strong turn. However, if the process must involve collapse of hydrophobic side chains, the nucleation should be slower as solvent molecules must be displaced to sequester the hydrophobic residues. These findings reflect the contribution of different forces toward nucleation of hairpins in the mechanism of folding of beta-sheets.  相似文献   

9.
Fabrication of controlled peptide nanofibers with homogeneous morphology has been demonstrated. Amphiphilic beta-sheet peptides were designed as sequences of Pro-Lys-X(1)-Lys-X(2)-X(2)-Glu-X(1)-Glu-Pro. X(1) and X(2) were hydrophobic residues selected from Phe, Ile, Val, or Tyr. The peptide FI (X(1)=Phe; X(2)=Ile) self-assemble into straight fibers with 80-120 nm widths and clear edges, as examined by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The fiber formation is performed in a hierarchical manner: beta-sheet peptides form a protofibril, the protofibrils assemble side-by-side to form a ribbon, and the ribbons then coil in a left-handed fashion to make up a straight fiber. These type of fibers are formed from peptides possessing hydrophobic aromatic Phe residue(s). Furthermore, a peptide with Ala residues at both N and C termini does not form fibers (100 nm scale) with clear edges; this causes random aggregation of small pieces of fibers instead. Thus, the combination of unique amphiphilic sequences and terminal Pro residues determine the fiber morphology.  相似文献   

10.
The self-assembly of beta-sheet peptide domains resulting in the formation of fibrillar aggregates (amyloids) is a feature of various neurodegenerative disorders. In order to evaluate mass spectrometric methods for the characterization of intermolecular beta-sheet structures the hydrogen/deuterium exchange behaviour of model peptides DPKGDPKG-(VT)(n)-GKGDPKPD-amide (n = 3,4,5,6,7,8), (VT)(n)-peptides, composed of a central beta-sheet-forming domain and N- and C-terminal nonstructured octapeptide sequences, was measured by electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The kinetic analysis of the hydrogen/deuterium exchange (HX) shows that intermolecular beta-sheet structures contain slowly exchanging protons (k 相似文献   

11.
Designing peptide based nanomaterials   总被引:2,自引:0,他引:2  
This tutorial review looks at the design rules that allow peptides to be exploited as building blocks for the assembly of nanomaterials. These design rules are either derived by copying nature (alpha-helix, beta-sheet) or may exploit entirely new designs based on peptide derivatives (peptide amphiphiles, pi-stacking systems). We will examine the features that can be introduced to allow self-assembly to be controlled and directed by application of an externally applied stimulus, such as pH, light or enzyme action. Lastly the applications of designed self-assembly peptide systems in biotechnology (3D cell culture, biosensing) and technology (nanoelectronics, templating) will be examined.  相似文献   

12.
Four tripeptide chains, when attached to the same end of a hydrogen-bonded duplex (1.2) with the unsymmetrical, complementary sequences of ADAA/DADD, have been brought into proximity, leading to the formation of four hybrid duplexes, 1a.2a, 1a.2b, 1b.2a, and 1b.2b, each of which contains a two-stranded beta-sheet segment. The extended conformations of the peptide chains were confirmed by 1D and 2D NMR. The peptide strands stay registered through hydrogen bonding and the beta-sheets are stabilized by side chain interactions. Two-dimensional NMR data also indicate that the duplex template prevents further aggregation in the peptide segment. When the peptide chains are attached to the two different termini of the duplex template, NMR studies show the presence of a mixture with no clearly defined conformations. In the absence of the duplex template, the tripeptides are found to associate randomly. Finally, isothermal titration calorimetry studies revealed that the hybrid duplex 1a.2a was more stable than either the duplex template or the peptides alone.  相似文献   

13.
The most abundant structural element in protein aggregates is the beta-sheet. Designed peptides that fold into a beta-sheet structure upon binding to lipid membranes are useful models to elucidate the thermodynamic characteristics of the random coil <-->beta-structure transition. Here, we examine the effect of strand length on the random coil <--> beta-sheet transition of the (KIGAKI)n peptide with the total chain length varying between 7 and 30 amino acids. The beta-sheet content of the peptides in the presence and absence of membranes was measured with circular dichroism spectroscopy. The peptides were titrated with small unilamellar lipid vesicles, and the thermodynamic binding parameters were determined with isothermal titration calorimetry (ITC). Membrane binding includes at least two processes, namely (i) the transfer of the peptide from the aqueous phase to the lipid surface and (ii) the conformational change from a random coil conformation to a beta-sheet structure. CD spectroscopy and ITC analysis demonstrate that beta-sheet formation depends cooperatively on the peptide chain length with a distinct increase in beta-structure for n > 10-12. Binding to the lipid membrane is an entropy-driven process as the binding enthalpy is always endothermic. The contribution of the beta-sheet folding reaction to the overall process was determined with analogues of the KIGAKI repeat where two adjacent amino acids were replaced by their D-enantiomers. The folding reaction for peptides with n >or= 12 is characterized by a negative free folding energy of DeltaG(degree)beta approximately equal -0.15 kcal/mol per amino acid residue. The folding step proper is exothermic with DeltaH(degree)(beta) approximately equal -0.2 to -0.6 kcal/mol per residue and counteracted by a negative entropy term TDeltaS(degree)(beta) = -0.1 to -0.5 kcal/mol per residue, depending on the chain length (18 相似文献   

14.
Amyloid deposits are formed as a result of uncontrolled aggregation of (poly)peptides or proteins. Today several diseases are known, for example Alzheimer's disease, Creutzfeldt-Jakob disease, mad cow disease, in which amyloid formation is involved. Amyloid fibrils are large aggregates of beta-pleated sheets and here a general method is described to introduce molecular mutations in order to achieve disruption of beta-sheet formation. Eight backbone-modified amylin derivatives, an amyloidogenic peptide involved in maturity onset diabetes, were synthesized. Their beta-sheet forming properties were studied by IR spectroscopy and electron microscopy. Modification of a crucial amide NH by an alkyl chain led to a complete loss of the beta-sheet forming capacity of amylin. The resulting molecular mutated amylin derivative could be used to break the beta-sheet thus retarding beta-sheet formation of unmodified amylin. Moreover, it was found that the replacement of this amide bond by an ester moiety suppressed fibrillogenesis significantly. Introduction of N-alkylated amino acids and/or ester functionalities-leading to depsipeptides-into amyloidogenic peptides opens new avenues towards novel peptidic beta-sheet breakers for inhibition of beta-amyloid aggregation.  相似文献   

15.
Several HLA-DR alleles present the immunodominant HA(306-318) peptide of haemagglutinin of the influenza virus to T cells. NMR data of the peptide in various water solutions exclude any alpha-helix or turn conformations. Circular dichroism and Fourier transform infrared spectroscopies indicate an estimated beta-extended structure in water of 31% and 28%, respectively, with spectra shape similar to the ones observed for beta-sheet containing proteins. The H/D amide exchange suggests a stable length-dependent interchain hydrogen-bonding. The partially beta-extended conformation of HA(306-318) in solution might be close to the one found in HA(306-318)-HLA-DR1 complex. These results suggest different interconverting extended conformations of HA(306-318), depending on the microenvironment of the solution medium. This flexibility emphasizes the ability of some peptides to fit more easily the binding site of several HLA-DR molecules. Similar results were obtained on the HIV P25(263-277) peptide which has been previously shown to be a good DR1 binder. From a vibrational point of view, infrared Amide I frequencies of secondary structures in peptides were ascertained. As previously demonstrated for proteins in solution, Fourier transform infrared and circular dichroism spectroscopies appear to be valuable tools for conformational properties of peptides. Their use may contribute to the detection of peptide conformation-binding relationship which has to be further tested by biochemical and biological studies.  相似文献   

16.
The construction of a designed beta-hairpin structure, containing a central three-residue loop has been successfully achieved in the synthetic nonapeptide Boc-Leu-Phe-Val-(D)Pro-(L)Pro-(D)Ala-Leu-Phe-Val-OMe (2). The design is based on expanding the two-residue loop established in the peptide beta-hairpin Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1). Characterization of the registered beta-hairpins in peptides 1 and 2 is based on the observation of key nuclear Overhauser effects (NOEs) in CDCl(3) and CD(3)OH. Solvent titration and temperature dependence of NH chemical shifts establish the identity of NH groups involved in interstrand hydrogen bonding. In peptide 2, the antiparallel registry is maintained, with the formation of a (D)Pro-(L)Pro-(D)Ala loop, stabilized by a 5-->1 hydrogen bond between Val3 CO and Leu7 NH groups (C(13), alpha-turn) and a 3-->1 hydrogen bond between (D)Pro4 CO and (d)Ala6 NH groups (C(7), gamma-turn). NMR derived structures suggest that in peptide 2, (d)Ala(6) adopts an alpha(L) conformation. In peptide 1, the (D)Pro-(L)Pro segment adopts a type II' beta-turn. Replacement of (D)Ala (6) in peptide 2 by (L)Ala in peptide 3 yields a beta-hairpin conformation, with a central (D)Pro-(L)Pro two-residue loop. Strand slippage at the C-terminus results in altered registry of the antiparallel strands.  相似文献   

17.
The interaction of two hybrid peptides of cecropin A and melittin [CA(1-8)M(1-18) and CA(1-7)M(2-9)] with liposomes was studied by differential scanning calorimetry (DSC), circular dichroism (CD), and quasi-elastic light scattering (QELS). The study was carried out with large unilamellar vesicles (LUVs) of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a binary mixture of DMPC/DMPG, in a wide range of peptide-to-lipid (P:L) molar ratios (0 to 1:7). DSC results indicate that, for both peptides, the interaction depends on membrane composition, with very different behavior for zwitterionic and anionic membranes. CD data show that, although the two peptides have different secondary structures in buffer (random coil for CA(1-7)M(2-9) and predominantly beta-sheet for CA(1-8)M(1-18)), they both adopt an alpha-helical structure in the presence of the membranes. Overall, results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, which gives place to aggregation in the gel phase and precipitation after a threshold peptide concentration. In the case of zwitterionic membranes, a progressive surface coverage with peptide molecules destabilizes the membrane, eventually leading to membrane disruption. Moreover, delicate modulations in behavior were observed depending on the peptide.  相似文献   

18.
The design and characterization of an open eight-stranded beta-sheet in a synthetic, 2-fold symmetric 70-residue peptide is described. The design strategy involves the generation of a 35-residue four-stranded beta-sheet peptide in which successive hairpins are nucleated by appropriately positioned (D)Pro-Xxx sequences. Oxidative dimerization using a single Cys residue positioned at the center of the C-terminal strand results in a disulfide-bridged eight-stranded structure. Nuclear Overhauser effects firmly establish an eight-stranded beta-sheet in methanol. In water, the outer strands are frayed, but a well-defined four-stranded beta-sheet stabilized by a disulfide bridge and a hydrophobic cluster is determined from NMR data. Comparison of the precursor peptide with the disulfide-bridged dimer reveals considerable enhancement of beta-sheet content in the latter, suggesting that the disulfide cross-link is an effective strategy for the stabilization of beta-sheets.  相似文献   

19.
We report the characterization of early aggregates in the self-assembly of prion peptides using nonlinear and ultrafast time-resolved fluorescence spectroscopy. The dye-labeled peptide and dye/peptide guest-host systems were used to demonstrate the feasibility of the new approach. By measuring the two-photon absorption cross-section, small aggregates of the dye labeled peptide were characterized. Ultrafast time-resolved fluorescence anisotropy spectroscopy reveals the packing state (microenvironment) of the probes to be tightly associated with aggregates and associated with aggregation progression of the peptides. Fluorescence intensity decay shows a correlation with growth of aggregates having a high level of structured beta-sheet content. A new binding ligand Cascade Yellow shows promise for beta-sheet recognition of prion peptide nanostructures. These findings may have implications for in vivo studies of neurotoxic aggregates targeting with fluorescence markers. Also, these results may provide insight into molecular design of peptide-based nanomaterials.  相似文献   

20.
Self-assembly is one of nature's mechanisms by which higher order structures are obtained. Two of the main driving forces for self-assembly, hydrophobic interactions and hydrogen bonding, are both present within amphiphilic peptides. Here, it is demonstrated how the intricately interconnected folding and assembly behavior of an N-terminally acylated peptide, with the sequence GANPNAAG, has been tuned by varying its hydrophobic tail and thermal history. The change in interplay between hydrophobic forces and peptide folding allowed the occurrence of different types of aggregation, from soluble peptides with a random coil conformation to aggregated peptides arranged in a beta-sheet assembly, which form helically twisted bilayer ribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号