首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A weakly acidic pH-responsive polypeptide is believed to have the potential for an endosome escape function in a polypeptide-triggered delivery system. For constructing a membrane fusion device with pH-responsiveness, we have designed novel polypeptides that are capable of forming an α2 coiled coil structure. Circular dichroism spectroscopy reveals that a polypeptide, AP-LZ(EH5), with a Glu and His salt-bridge pair at a staggered position in the hydrophobic core forms a stable coiled coil structure only at endosomal pH values (pH 5.0 to 5.5). On the basis of their endosomal-pH responsiveness, a boronic acid/polypeptide conjugate (BA-H5-St) was also designed as a pilot molecule to construct a pH-responsive, one-way membrane fusion system with a sugarlike compound (phosphatidylinositol: PI)-containing liposome as a target. Membrane fusion behavior was characterized by lipid-mixing, inner-leaflet lipid-mixing, and contents-mixing assays. These studies reveal that membrane fusion is clearly observed when the pH of the experimental system is changed from 7.4 (physiological condition) to 5.0 (endosomal condition).  相似文献   

2.
As water is gradually added, a p-terphenyl derivative with dumbbell-like amphiphilic and rod-coil characteristics can hierarchically self-assemble to metastable rectangle columns architecting sheets first and then to stable quasi-hexagonal columns architecting rolled sheets, and finally to rod-like nanostructures in MeOH/H2O solution. Interestingly, the formed sheet, rolled sheet, and nanorod possess blue-light emitting property.  相似文献   

3.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

4.
The pH-responsive behavior of cationic diblock poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) copolymer micelles adsorbed at the silica/aqueous solution interface has been characterized. The micellar morphology of this copolymer, initially adsorbed at pH 9, can be dramatically altered by lowering the solution pH. The original micelle-like morphology of the adsorbed copolymer chains at pH 9 completely disappears as the pH is decreased to 4, and a brush-like layer structure is produced. This change results from protonation of the copolymer chains: the subsequent electrostatic repulsions within the film drive the copolymer chains to expand into the aqueous phase. Returning the solution pH from 4 to 9 causes this brush-like layer to collapse, with atomic force microscopy images suggesting degradation of the film. Hence, the pH-responsive behavior of the copolymer film exhibits irreversible morphological changes. Measurements of the adsorbed/desorbed amounts of the copolymer film were conducted using both a quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). After an initial rinse at both pH values, the OR adsorbed mass becomes almost constant during subsequent pH cycling, whereas the corresponding QCM-D adsorbed mass changes significantly but reversibly in response to the solution pH. Since the QCM-D measures a bound mass that moves in tandem with the surface, the discrepancy with the OR data is due to changes in the amount of bound water in the copolymer film as a result of the pH-induced changes in surface morphology. The larger effective mass observed at pH 4 suggests that the brush-like layer contains much more entrapped water than the micellar films at pH 9. The pH dependence of the contact angle of the adsorbed film is consistent with the changes observed using the other techniques, regardless of whether the solution pH is altered in situ or the aqueous solution is completely replaced. In fact, comparison of these two approaches provides direct evidence of the exposure of adsorbed micelle core blocks to the solution during pH cycling and the concomitant impact upon all the other measurements.  相似文献   

5.
Hierarchically organized single-nanoparticle structures synthesized in this work consisted of a 200 nm silica core and a pH-responsive poly(2-vinylpyridine) shell decorated with 15 nm gold nanoparticles. pH changes in the range of 3-6 back and forth results in a swelling-shrinking polymer brush shell and, thus, in the tuning distance between noble nanoparticles. A change in the interparticle distance is accompanied by a very pronounced shift in the maximum wavelength of the surface plasmon absorption peak. The dispersion of the resulting composite nanoparticles reversibly changed color from red to purple-blue as the pH changed from 2.5 to 6. Such hierarchically assembled nanostructures can be used as free-standing single-particle sensors in various miniaturized analytical systems.  相似文献   

6.
Novel amphiphilic copolymers based on poly(ε-caprolactone) (PCL) and hyperbranched poly (amine-ester) (HPAE) with various compositions were synthesized. The amphiphilic copolymers can self-assemble into nanoscopic micelles and their hydrophobic cores can encapsulate doxorubicin (DOX) in aqueous solutions. The DOX-loaded HPAE-co-PCL nanoparticles diameter increased from 121 to 184 nm with the increasing PCL segment in the copolymer composition. An in vitro study at 37°C demonstrated that DOX-release from nanoparticles at pH 5.0 was much faster than that at pH 7.4. The cytotoxicity for HeLa cells study demonstrated that DOX-loaded HPAE-co-PCL nanoparticles exhibited the anti-tumor effect was enhanced significantly, suggesting that the DOX-loaded HPAE-co-PCL nanoparticles have great potential as a tumor drug carrier.  相似文献   

7.
通过固相合成法制备了三条疏水端不同的两亲性多肽VVVVVVKKGRGDS (AP1)、C12KKGRGDS(AP2)、FAFAFAKKGRGDS (AP3). 自组装行为研究表明, 三条多肽在中性条件下(pH 7.0)均能形成球形纳米胶束, 透射电子显微镜(TEM)检测其粒径为~30 nm, 动态光散射(DLS)测试其粒径分布均一. 当pH下降为5.0时,肽链AP1的胶束结构被破坏, TEM视野中没有发现任何自组装体, 而肽链AP2和AP3的胶束结构在pH 5.0时依然存在, 但AP2的纳米粒子之间明显发生了部分聚集, 表现为团聚样分布, AP3组装体的粒径明显增大, 形貌变得不规则. DLS测试结果显示, 当pH下降到5.0时, 肽链AP1在1-1000 nm范围内没有出现吸收峰, AP2呈多峰分布, AP3呈宽单峰分布. DLS的测试结果很好地印证了TEM的测试结果. 为了探究三条多肽组装性能不同的二级结构因素, 我们对AP1、AP2和AP3进行了圆二色谱(CD)和傅里叶变换红外(FT-IR)光谱测试. 结果表明, 三条多肽在中性条件下二级结构中均存在一定含量的β-折叠, 当pH下降到5.0 时, AP1 结构中的β-折叠成分显著下降, 出现部分无规卷曲. AP2和AP3的β-折叠成分虽有变化, 但其CD主峰依然存在. 以姜黄素作为模型药物, 进一步确认AP1 载药胶束的释药行为也具有优良的酸敏感特性. AP1、AP2 和AP3 在酸性条件下自组装行为的不同, 表明调控两亲性多肽的疏水端组成有可能是调控多肽自组装性能的有效手段. AP1组装体有望成为理想的pH响应性载体材料.  相似文献   

8.
Herein a polyurethane graft poly‐l ‐glutamate amphiphilic copolymer was synthesized from a polyurethane (PU)‐based macro‐initiator (containing pendant primary amine groups) through the ring opening polymerization of N‐carboxy anhydride of γ‐benzyl‐l ‐glutamate ( BLG‐NCA ). On average, twenty two l ‐glutamic acids were grafted from each amino group which was pendant on the polyurethane chain with 10 repeating units. The grafted polymer ( PU‐PP‐1 ) exhibits self‐assembly to produce a hydrogel in a wide pH window ranging from pH 5.0 to 8.0 with a critical gelation concentration (CGC) of 5.0 wt % (w/v) at pH 7.4. Furthermore, circular dichroism study revealed the transition of the α‐helix to a random coil upon increasing the pH. Due to the protonation of side chains at pH 4.0, PU‐PP‐1 adopted an α‐helical conformation whereas at pH >8.0 the side‐chain carboxylic acid groups of the PLGAs were ionized, leading to the formation of an extended random coil conformation as a result of charge repulsion. Conformational switching was also supported by FTIR spectroscopy.  相似文献   

9.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

10.
The pH and temperature responsive properties of poly(butadiene)107-poly(L-lysine)27 (PB107-P(Lys)27) block copolymer vesicles in aqueous solution were studied using dynamic and static light scattering, circular dichroism spectroscopy and transmission electron microscopy. In this material, the responsiveness comes partially from secondary structure changes within the polypeptide chain. These studies seek to elucidate the effect of these different polypeptide secondary structure changes on the morphology of self-assembled vesicles. It was found that as pH decreases, protonation of P(Lys) side-chain amine groups causes swelling in the vesicles due to the helix-coil transition and associated charge-charge interactions within the corona chains. At high pH and high temperature, P(Lys) corona chains undergo a secondary structure change from alpha-helix to beta-sheet which causes an increase in vesicle size due to the relief of interfacial curvature. This study represents one of the first instances whereby different secondary structure transitions within the same polypeptide have been incorporated into a block copolymer assembly that can be used to produce dual-responsive materials.  相似文献   

11.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

12.
A set of three pH-responsive ratiometric Eu(III)complexes has been synthesised incorporating a coordinated azathioxanthone sensitiser and a pH dependent alkylsulfonamide moiety. Emission properties, anion binding affinities, pH response curves and protein binding constants were studied in detail in aqueous media, and solutions containing various concentrations of interfering anions and protein were also examined. The complex, [EuL3] exhibited some interference from protein and endogenous anions, e.g. lactate and hydrogen carbonate, but possessed a protonation constant of 7.2 in human serum solution. A suitable calibration curve was obtained and was used to determine the local pH using a 680/589 nm intensity ratio vs. pH plot. Confocal fluorescence microscopy images revealed fast uptake of the complex and a well distributed localisation within the cell; fast egress also occurred. Ribosomal localisation, with a high concentration within the protein-dense nucleoli was observed, in a similar manner to structurally related complexes bearing the same coordinated sensitising moiety. An IC(50) value of 67 (+/-20) microM was estimated using an MTT assay. Selected emission band ratio versus pH plots allow pH measurement in the range 6 to 8, enabling intracellular pH to be measured by microscopy. A value of 7.4 was estimated for NIH 3T3 cells in the protein rich regions of the nucleolus and ribosomes.  相似文献   

13.
A well-defined block copolymer consisting of four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) (four-arm PEO56-b-PDEAEMA74) was synthesized by atom transfer radical polymerization. The pH-responsive self-assembly behavior was examined by potentiometric titration, surface tensiometry, laser light scattering, and transmission electron microscopy over the course of dissociation by the addition of a base or acid. The apparent hydrodynamic radius (Rh) of the micelle increased from 21 to 56 nm when the degree of protonation of the amine groups was increased from 0 to 0.5 in 0.01 M NaCl solution. In higher concentration NaCl solution, the micelle shrank due to the electrostatic charge screening of the protonated DEAEMA groups. At low pH, the micelles dissociated into unimers.  相似文献   

14.
Novel monodisperse cationic pH-responsive microcapsules are successfully prepared using oil-in-water-in-oil double emulsions as templates by a microfluidic technique in this study. With the use of a double photo-initiation system and the adjustment of pH value of the monomer solution, cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDM) microcapsules with good sphericity and monodispersity can be effectively fabricated. The obtained microcapsule membranes swell at low pH due to the protonation of N(CH(3))(2) groups in the cross-linked PDM networks. The effects of various preparation parameters, such as pH of the aqueous monomer fluid, concentration of cross-linker, concentration of monomer N,N-dimethylaminoethyl methacrylate (DM) and addition of copolymeric monomer acrylamide (AAm), on the pH-responsive swelling characteristics of PDM microcapsules are systematically studied. The results show that, when the PDM microcapsules are prepared at high pH and with low cross-linking density and low DM monomer concentration, they exhibit high pH-responsive swelling ratios. The addition of AAm in the preparation decreases the swelling ratios of PDM microcapsules. The external temperature has hardly any influence on the swelling ratios of PDM microcapsules when the external pH is less than 7.4. The prepared PDM microcapsules with both biocompatibility and cationic pH-responsive properties are of great potential as drug delivery carriers for tumor therapy. Moreover, the fabrication methodology and results in this study provide valuable guidance for preparation of core-shell microcapsules via free radical polymerization based on synergistic effects of interfacial initiation and initiation in a confined space.  相似文献   

15.
The new amphiphilic peptide 1 is composed of alternating cyclohexyl side chains and guanidiniocarbonyl pyrrole (GCP) groups. In contrast to analogue 2 , which contains lysine instead of the GCP groups and only exists as a random coil owing to charge repulsion, peptide 1 forms a stable β‐sheet at neutral pH in aqueous medium. The weakly basic GCP groups (pKa≈7) are key for secondary structure formation as they stabilize the β‐sheet through mutual interactions (formation of a “GCP zipper”). The β‐sheets further aggregate into left‐handed helically twisted fibers. However, β‐sheet formation is completely reversible as a function of pH. At low pH (ca. 4), peptide 1 is unstructured (random coil) as all GCP units are protonated. Only round colloidal particles are observed. The amyloid nature of the fibers formed at neutral pH was confirmed by staining experiments with Congo Red and thioflavin T. Furthermore, at millimolar concentrations, peptide 1 forms a stable hydrogel.  相似文献   

16.
Photoreaction dynamics of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP), one of nonsteroidal anti-inflammatory drugs, with histidine in a phosphate buffer solution (pH 7.4) was investigated with the laser flash photolysis. The deprotonated form of KP (KP(-)) was decarboxylated via UV laser excitation to form a carbanion. It was found that histidine accelerates the protonation reaction of the carbanion to 3-ethylbenzophenone ketyl biradical (3-EBPH) for the first time. The experimental results of the photoreaction of KP with alanine as well as the photoreaction of KP with 4-methylimidazole (a part of the side chain of histidine) in methanol, clearly showed that the protonated form of histidine is a key species for the protonation reaction of the carbanion. These series of the initial reactions should result in the occurrence of photosensitization in vivo. The reaction mechanism was discussed in detail.  相似文献   

17.
Near-infrared (NIR) fluorophores with pH-responsive properties suggest merits in biological analyses. This work establishes a general and effective method to obtain pH-responsive NIR emissive gold nanoclusters by introducing aliphatic tertiary amine (TA) groups into the ligands. Computational study suggests that the pH-responsive NIR emission is associated with electronic structure change upon protonation and deprotonation of TA groups. Photo-induced electron transfer between deprotonated TA groups and the surface Au-S motifs of gold nanoclusters can disrupt the radiative transitions and thereby decrease the photoluminescence intensity in basic environments (pH=7–11). By contrast, protonated TA groups curb the electron transfer and restore the photoluminescence intensity in acidic environments (pH=4–7). The pH-responsive NIR-emitting gold nanoclusters serve as a specific and sensitive probe for the lysosomes in the cells, offering non-invasive emissions without interferences from intracellular autofluorescence.  相似文献   

18.
The tetramer destabilization of transthyretin into monomers and its fibrillation are phenomena leading to amyloid deposition. Heparan sulfate proteoglycan (HSPG) has been found in all amyloid deposits. A chromatographic approach was developed to compare binding parameters between wild‐type transthyretin (wtTTR) and an amyloidogenic transthyretin (sTTR). Results showed a greater affinity of sTTR for HSPG at pH 7.4 compared with wtTTR owing to the monomeric form of sTTR. Analysis of the thermodynamic parameters showed that van der Waals interactions were involved at the complex interface for both transthyretin forms. For sTTR, results from the plot representing the number of protons exchanged vs pH showed that the binding mechanism was pH‐dependent with a critical value at a pH 6.5. This observation was due to the protonation of a histidine residue as an imidazolium cation, which was not accessible when TTR was in its tetrameric structure. At pH >6.5, dehydration at the binding interface and several contacts between nonpolar groups of sTTR and HSPG were also coupled to binding for an optimal hydrogen‐bond network. At pH <6.5, the protonation of the His residue from sTTR monomer when pH decreased broke the hydrogen‐bond network, leading to its destabilization and thus producing slight conformational changes in the sTTR monomer structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Emulsion polymerization of 2-(diethylamino)ethyl methacrylate (DEA) in the presence of a bifunctional cross-linker at pH 8-9 afforded novel pH-responsive microgels of 250-700 nm diameter. Both batch and semicontinuous syntheses were explored using thermal and redox initiators. Various strategies were evaluated for achieving colloidal stability, including charge stabilization, surfactant stabilization, and steric stabilization. The latter proved to be the most convenient and effective, and three types of well-defined reactive macromonomers were examined, namely, monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA), styrene-capped poly[2-(dimethylamino)ethyl methacrylate] (PDMA50-St), and partially quaternized styrene-capped poly[2-(dimethylamino)ethyl methacrylate] (10qPDMA50-St). The resulting microgels were pH-responsive, as expected. Dynamic light scattering and 1H NMR studies confirmed that reversible swelling occurred at low pH due to protonation of the tertiary amine groups on the DEA residues. The critical pH for this latex-to-microgel transition was around pH 6.5-7.0, which corresponds approximately to the known pKa of 7.0-7.3 for linear PDEA homopolymer. The microgel particles were further characterized by electron microscopy and aqueous electrophoresis studies. Their swelling and deswelling kinetics were investigated by turbidimetry. The PDEA-based microgels were compared to poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) microgels prepared with identical macromonomer stabilizers. These PDPA-based microgels had a lower critical swelling pH of around pH 5.0-5.5, which correlates with the lower pKa of PDPA homopolymer. In addition, the kinetics of swelling for the PDPA microgels was somewhat slower than that observed for PDEA microgels; presumably this is related to the greater hydrophobic character of the former particles.  相似文献   

20.
In many viruses, pH-responsive coiled-coil domains in the specific fusion proteins play important roles in membrane fusion and the infection of viruses into host cells. To investigate the relationship between the conformational change of the coiled coil and the fusion process, we have introduced a de novo designed polypeptide as a model system of the coiled-coil domain. This system enables the systematic study of the dynamics of pH-responsive coiled-coil polypeptide-membrane interactions. First, we designed and synthesized pH-responsive isoleucine-zipper triple-stranded coiled-coil polypeptides. Then the relationship between the pH-induced conformational change of the polypeptide and the membrane's interactive properties was studied by physicochemical methods. Structural changes in the designed polypeptides were examined by means of circular dichroism measurements. And finally, the behavior of the membrane fusion was investigated by leakage of liposomal contents, turbidity analysis, dynamic light scattering, and lipid mixing experiments. Our data show that coiled-coil formation under acidic pH conditions enhances polypeptide-induced membrane fusion. The results in this study demonstrate that an artificial membrane fusion system can be constructed on a molecular level by the use of a pH-responsive isoleucine-zipper triple-stranded coiled-coil polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号