首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman scattering (SERS) is a popular vibrational spectroscopic technique that can have several applications in chemical and biological sensing. Within the last decade or so, our ability to chemically synthesize nanostructures has improved to the point that the rational design of a variety of SERS substrates is now viable. In this report, we describe a computational study using the finite element method (FEM) to investigate the effects of patchy silica coatings on silver nanowires. We found that varying the degree of silica coating on silver nanowires impacts the enhancement and may be explained through two processes. The first process is a consequence of changes in the dielectric environment surrounding the nanowire due to the silica. As additional layers of silica coat the nanowire, the localized surface plasmon resonance of the nanowire redshifts. The second process is a result of silica distorting the local electric field around the nanowire surface. Anisotropic silica coating can influence anticipated enhancement depending on its spatial localization with respect to excited plasmon modes in the nanowire. We propose that the design of nanostructures with patchy silica coatings can be a viable tool for increasing surface enhancement.  相似文献   

2.
Thanks to their tunable and strong interaction with light, plasmonic nanostructures have been investigated for a wide range of applications. In most cases, controlling the electric field enhancement at the metal surface is crucial. This can be achieved by controlling the metal nanostructure size, shape, and location in three dimensions, which is synthetically challenging. Electrochemical methods can provide a reliable, simple, and cost-effective approach to nanostructure metals with a high degree of geometrical freedom. Herein, we review the use of electrochemistry to synthesize metal nanostructures in the context of plasmonics. Both template-free and templated electrochemical syntheses are presented, along with their strengths and limitations. While template-free techniques can be used for the mass production of low-cost but efficient plasmonic substrates, templated approaches offer an unprecedented synthetic control. Thus, a special emphasis is given to templated electrochemical lithographies, which can be used to synthesize complex metal architectures with defined dimensions and compositions in one, two and three dimensions. These techniques provide a spatial resolution down to the sub-10 nanometer range and are particularly successful at synthesizing well-defined metal nanoscale gaps that provide very large electric field enhancements, which are relevant for both fundamental and applied research in plasmonics.  相似文献   

3.
Silver-based nanostructures with tailored localized surface plasmon resonance are of interest for a number of practical applications. They can conventionally be divided into three main groups: (1) anisotropic silver particles, (2) particles of alloys of silver with other metals, and (3) composite particles with dielectric or magnetic cores and silver shells. Fine “tuning” of plasmon resonance of these particles is ensured by changes in their shapes, composition, and/or structure. Procedures for the colloidal synthesis of nanostructures of all these groups and some fields of their application are described, with the main attention focused on core/shell composite particles.  相似文献   

4.
Ong BH  Yuan X  Tan YY  Irawan R  Fang X  Zhang L  Tjin SC 《Lab on a chip》2007,7(4):506-512
We demonstrate an enhancement of fluorescence emission due to bimetallic silver-gold film-induced surface plasmon wave extension. Rhodamine B (RhB) dyes were excited by the evanescent wave field produced from surface plasmon polaritons excited on metal-deposited sections along an embedded strip waveguide. Various silver-gold combinations were used to quantify for the evanescent field enhancement. The underlying silver yields better evanescent field enhancement, while the overlying gold ensures that the stability of the sensing surface is not compromised. In comparison to the conventional single gold film surface plasmon resonance (SPR) configuration, the two-layered metallic structure is capable of enhancing the surface plasmon polariton (SPP) evanescent field considerably, as verified experimentally by the ca. 4.0 times improvement in the RhB fluorescence emission. The compact waveguide structure and improved electric field probing depth can potentially be exploited for on-chip SPR--fluorescence excitation of less concentrated fluorophore-labelled biological and chemical analytes, with a capability of massively parallel processing for high throughput screening.  相似文献   

5.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   

6.
Poly(N-vinyl-2-pyrrolidone) (PVP) and gelatin protected silver nanostructures are prepared in formamide by simple chemical route. Both PVP and gelatin stabilized silver nanoparticles in formamide lead to the formation of nanostructures of various definite geometric shapes and sizes. The effect of anisotropy on the surface plasmon absorption band is analyzed by monitoring the UV-Visible absorption spectra of gelatin stabilized silver nanoparticles. The particles were characterized by UV-Visible absorption spectra and TEM.  相似文献   

7.
In this article, studies on noble metal nanostructures using near-field optical microscopic imaging are reviewed. We show that near-field transmission imaging and near-field two-photon excitation imaging provide valuable methods for investigation of plasmon resonances in metal nanostructures. The eigenfunctions of plasmon modes in metal nanoparticles are directly visualized using these methods. For metal nanowire systems, wavevectors of the longitudinal plasmon modes can be estimated directly from the wave-function images, and the dispersion relations are plotted and analyzed. Using ultrafast transient near-field imaging, we show that the deformation of the plasmon wave function takes place after photoexcitation of a gold nanorod. Such methods of plasmon-wave imaging may provide a unique basic tool for designing plasmon-mode-based nano-optical devices. We also demonstrate that the near-field two-photon excitation probability images reflect localized electric-field enhancements in metal nanostructures. We apply this method to gold nanosphere assemblies and clearly visualize the local enhanced optical fields in the interstitial sites between particles (hot spots). We also show the contribution of hot spots to surface enhanced Raman scattering. The methodology described here may provide valuable basic information about the characteristic enhanced optical fields in metal nanostructures as well as on their applications to new innovative research areas beyond the conventional scope of materials.  相似文献   

8.
We report cellphone‐based detection of dopamine with attomolar sensitivity in clinical samples with the use of a surface plasmon‐coupled emission (SPCE) platform. To this end, silver‐coated carbon nanotubes were used as spacer and cavity materials on SPCE substrates to obtain up to 100‐fold fluorescence enhancements. The presence of silver on the carbon nanotubes helped to overcome fluorescence quenching arising due to π–π interactions between the carbon nanotube and rhodamine 6G. The competing adsorption of dopamine versus rhodamine 6G on graphene oxide was utilized to develop this sensing platform.  相似文献   

9.
Tip-enhanced Raman spectroscopy (TERS) is a promising technique for structural studies of biological systems and biomolecules, owing to its ability to provide a chemical fingerprint with sub-diffraction-limit spatial resolution. This application of TERS has thus far been limited, due to difficulties in generating high field enhancements while maintaining biocompatibility. The high sensitivity achievable through TERS arises from the excitation of a localized surface plasmon resonance in a noble metal atomic force microscope (AFM) tip, which in combination with a metallic surface can produce huge enhancements in the local optical field. However, metals have poor biocompatibility, potentially introducing difficulties in characterizing native structure and conformation in biomolecules, whereas biocompatible surfaces have weak optical field enhancements. Herein, a novel, biocompatible, highly enhancing surface is designed and fabricated based on few-monolayer mica flakes, mechanically exfoliated on a metal surface. These surfaces allow the formation of coupled plasmon enhancements for TERS imaging, while maintaining the biocompatibility and atomic flatness of the mica surface for high resolution AFM. The capability of these substrates for TERS is confirmed numerically and experimentally. We demonstrate up to five orders of magnitude improvement in TERS signals over conventional mica surfaces, expanding the sensitivity of TERS to a wide range of non-resonant biomolecules with weak Raman cross-sections. The increase in sensitivity obtained through this approach also enables the collection of nanoscale spectra with short integration times, improving hyperspectral mapping for these applications. These mica/metal surfaces therefore have the potential to revolutionize spectromicroscopy of complex, heterogeneous biological systems such as DNA and protein complexes.  相似文献   

10.
The use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.  相似文献   

11.
Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.  相似文献   

12.
Conducting polymer (polyaniline) sheets are shown to be active substrates to promote the growth of nanostructured silver thin films with highly tunable morphologies. Using the spontaneous electroless deposition of silver, we show that a range of nanostructured metallic features can be controllably and reproducibly formed over large surface areas. The structural morphology of the resulting metal-polymer nanocomposite is demonstrated to be sensitive to experimental parameters such as ion concentration, temperature, and polymer processing and can range from densely packed oblate nanosheets to bulk crystalline metals. The deposition mechanisms are explained using a diffusion-limited aggregation (DLA) model to describe the semi-fractal-like growth of the metal nanostructures. We find these composite films to exhibit strong surface-enhanced Raman (SERS) activity, and the nanostructured features are optimized with respect to SERS activity using a self-assembled monolayer of mercapto-benzoic acid as a model Raman reporter. SERS enhancements are estimated to be on the order of 10(7). Through micro-Raman SERS mapping, these materials are shown to exhibit uniform SERS responses over macroscopic areas. These metal-polymer nanocomposites benefit from the underlying polymer's processability to yield SERS-active materials of almost limitless shape and size and show significant promise for future SERS-based sensing and detection schemes.  相似文献   

13.
A roughed silver electrode modified with gold/silver nanoparticles is used as a substrate, on which high quality SERS of SWCNTs are obtained, indicating that the modified silver electrode is a high-quality SERS-active substrate for SWCNTs. Some new bands that indicate the structure of SWCNTs were obtained. The gold/silver nanoparticles modified on the roughed silver electrode surface can not only make sure the strong adsorption of SWCNTs in this system but also play an important role in magnifying the surface local electric field near the silver electrode surface through resonant surface plasmon excitation. From the rich information on the modified silver electrode obtained from the SERS and the potential dependent SERS, we may deduce the probable SERS mechanism in the process. The theory and experiment results indicate that it is can be used as a new technique for monitoring synthesis quality of SWCNTs. The probable reasons are given.  相似文献   

14.
A sandwich structured substrate was designed for quantitative molecular detection using surface enhanced Raman scattering (SERS), in which the probe molecule was sandwiched between silver nanoparticles (SNPs) and silver nanoarrays. The SNPs was prepared using Lee-Meisel method, and the silver nanoarrays was fabricated on porous anodic aluminum oxide (AAO) using electrodepositing method. The SERS studies show that the sandwich structured substrate exhibits good stability and reproducibility, and the detection sensitivity of Rhodamine 6G (R6G) and Melamine can respectively reach up to 10(-19) M and 10(-9) M, which is improved greatly as compared to other SERS substrates. The improved SERS sensitivity is closely associated with the stronger electromagnetic field enhancement, which stems from localized surface plasmon (LSP) coupling between the two silver nanostructures. Furthermore, the SERS intensity increased almost linearly as the mother concentration increased, which indicates that such a sandwich structure may be used as a good SERS substrate for quantitative analysis.  相似文献   

15.
The use of plasmonic nanostructures for fluorescence signal amplification is currently a very active research field. The detection of submonolayers of proteins labeled with organic dyes is a widely used technique in surface-based immunoassays and DNA hybridization. There is a strong interest in the development of new optical and chemical methods to increase the signal from ultralow concentrations of dyes on the surface of sensor substrates. Herein, we have explored the possibility of using vacuum-deposited silver nanostructures on dielectric layers and silver mirrors as potential plasmonic substrates that effectively amplify fluorescence over a broad spectral range. By optimizing deposition parameters for dielectric layers and silver nanostructures and applying thermal annealing processes, we observed large fluorescence amplifications from three different dye-strept(avidin) conjugates: about 7-fold for a UV/blue dye AF350-Av, 49-fold for a blue-green dye AF488-SA, and up to 208-fold for red-emitting AF647-SA dye. The observed amplification factors for the ensemble of fluorophores are very promising for development of surface-based bioassays. These substrates can be prepared using simple vacuum deposition in which we circumvent using the expensive nanofabrication methods. In addition, unlike most nanofabrication methods, the present approach is appropriate for large scale fabrication of substrates with microscope slide surface area suitable for sensing applications.  相似文献   

16.
Surface-enhanced Raman scattering (SERS) spectrum of very good quality of "silver nano-particles/sample molecules/silver film" system was reported by nesting the sample molecules to the gap of silver nano-particles and silver film, indicating that "silver nano-particles/sample molecules/silver film" is a highly SERS-active system. Not only was the number of the vibrational modes increased, but also were the frequencies of Raman bands up and down shifted. It is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. The shift by 5-30cm(-1) of the SERS bands and the change in their relative intensity compared with the ordinary Raman spectrum indicate the chemisorption of the sample molecules on the silver-modified silver surface. Furthermore, the silver nano-particles modified on the rough silver film surface play an important role in magnifying the surface local electric field near the silver surface through resonant surface plasmon excitation. From the rich information, obtained from high-quality SERS of PHBA in ternary system, we inferred that PHBA molecules in ternary system adsorb onto the metal surfaces through carboxyl at a perpendicular orientation.  相似文献   

17.
食品污染是危害公众健康和安全的重要问题,探究灵敏、快速、简单的技术,以便在痕量水平上检测污染物,对保障食品质量安全和风险评价具有十分重要的意义.表面增强拉曼光谱(SERS)是利用光与金、银等纳米结构材料相互作用产生很强的表面等离子激元共振效应,可显著增强吸附在纳米结构表面上分子的拉曼信号,以超灵敏获取样品自身或拉曼探针...  相似文献   

18.
Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. As in surface plasmon resonance, the electric field of incident light can be deposited to collectively excite electrons of a conduction band, with the result being coherent localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, dielectric environment and separation distance of NPs. This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity. The benefits and challenges associated with various experimental designs of nanoparticles and detection systems, as well as creative approaches that have been developed to improve sensitivity and limits of detection are highlighted using examples from the literature.  相似文献   

19.
Random parallel nanostructures (ridges and channels) were created by scratching gold thin films deposited on glass slides. Atomic force microscope (AFM) images showed that the width of the substructures within the scratches were of the order of a few hundred nanometers. These nanometric gold features can then support localized surface plasmon resonances in the direction perpendicular to the propagation of the scratches. This surface plasmon excitation led to a remarkable dependence of the intensity of the surface-enhanced resonance Raman scattering (SERRS) on the polarization direction of the incident light relative to the orientation of the scratch. The maximum SERRS intensities for oxazine 720 (a common laser dye) adsorbed on these nanostructures were obtained when the polarization of the light field was perpendicular to the direction of the substructures. The SERRS intensities followed a squared dependence on the polarization direction of the incident field.  相似文献   

20.
We investigated fluorescence enhancements and lifetime reductions of Cy5 probe molecules at various distances from the deposited silver island film surface using single molecule spectroscopic methods. The proximity of fluorophore molecules to the surface was controlled by alternating layers of biotinylated bovine serum albumin (BSA-biotin) and avidin, followed by binding of Cy5-labeled oligonucleotides to the top of a BSA-biotin layer structure. We observed dramatically varied brightness of fluorophores with distances from metal structures as well with reduced blinking in the presence of silver island films. In addition, distributions of fluorescence lifetimes and apparent emission intensities from individual molecules indicate an inhomogeneous nature of local matrix surface near metallic nanostructures. These studies illustrate the exclusive information that is otherwise hidden in ensemble measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号