首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between cells and biomaterials has been mimicked using nylon microparticles as pseudo-cells and PLMA and PIBMA as biomaterial model acrylate polymers. The shift of fundamental resonance frequencies was negative for both polymers, indicating mass-coupling to the sensor surface. The shifts of the 3rd, 5th and 7th overtone frequencies were initially positive for both polymers, indicating a particle slip or wobbling on the surface. The QCM technique could discriminate between the two different polymers, showing increased interaction between microparticle and PLMA. The dissipation shift was positive for all overtones on both polymers, but again with faster and more prominent response for PLMA.  相似文献   

2.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

3.
We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.  相似文献   

4.
The adsorption behavior of ethyl(hydroxyethyl) cellulose EHEC and hydrophobically modified EHEC (HM-EHEC) at hydrophilic and hydrophobic surfaces has been studied using surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) methods. The adsorbed amounts measured with the different methods were different due to large amounts of water in the films. The slow adsorption process made it reasonable to assume a continuous polymer reconfiguration process at the surface. This was mostly seen for HM-EHEC at the hydrophobic surface, where a more flexible structure was adopted during the adsorption process. A cross-linking agent was seen to truly interpolymer cross-link EHEC at the hydrophilic surface and HM-EHEC at the hydrophobic surface. For EHEC at a hydrophobic surface and for HM-EHEC at a hydrophilic surface, the polymers adsorbed in an individually phase-separated manner, making an interpolymer cross-linking reaction unsuccessful.  相似文献   

5.
Chemical modifications of mineral surfaces were performed in order to gain insight into what surface properties are decisive of the accumulation of dental plaque. A non-charged, hydrophilic surface was made by two consecutive plasma polymerizations, firstly with allyl alcohol, secondly with acrylic acid, followed by adsorption of a poly(ethylene glycol)-poly(ethylene imine) adduct. A strongly hydrophobic surface was obtained by plasma polymerization of hexamethyldisiloxane. Ellipsometry was used to monitor protein interaction with the surfaces. The hydrophilic surface gave very little adsorption of both a model protein, IgG, and of saliva proteins. The hydrophobic surface, on the other hand, adsorbed high amounts of both types of proteins. In vitro adhesion of an oral bacterium,S. mutans, as well as in vivo studies, gave the opposite result, the hydrophobic surface giving less adhesion and less plaque accumulation than the hydrophilic surface. A tentative explanation of this behavior is that the saliva proteins that bind to the hydrophobic surface adsorb in an unnatural conformation which does not favor bacteria adherence.  相似文献   

6.
Diatoms are a major component of the biofoul layer found on modern low-surface-energy, 'foul release' coatings. While diatoms adhere more strongly to hydrophobic, as opposed to hydrophilic, surfaces, surprisingly little is known of the chemical composition of their adhesives. Even less is known about the underlying processes that characterize the interaction between the adhesive and a given surface, including those of differing wettability. Using the quartz crystal microbalance with dissipation monitoring (QCM-D), we examined differences in the viscoelastic properties of the extracellular adhesives produced by the marine diatoms Amphora coffeaeformis Cleve and Craspedostauros australis Cox interacting with surfaces of differing wettability; 11-mercaptoundecanoic acid (MUA) that is hydrophilic and 1-undecanethiol (UDT) that is hydrophobic. While the overall delta f/delta D ratios were slightly different, the trends were the same for both diatom species, with the layer secreted upon UDT to be more viscoelastic and far more consistent over several experiments, compared to that on MUA which was less viscoelastic and demonstrated far more variability between experiments. While the nature of the parameter shifts for C. australis were the same for both surfaces, A. coffeaeformis cells settling upon UDT illustrated significant positive f and D shifts during the initial stages of cell settlement and adhesion to the surface. Further experiments revealed the parameter shifts to occur only during the initial adhesion of cells upon the pristine virgin UDT surface. The mechanism behind these parameter responses was isolated to the actin-myosin/adhesion complex (AC), using the myosin inhibitor 2,3-butanedione 2-monoxime (BDM) to remove the cells ability to 'pull' on adhesive strands emanating from the cell raphe. The observations made herein have revealed that adhesives secreted by fouling diatoms differ significantly in their interaction with surfaces depending on their wettability, as well as illustrating the unique mechanics behind the adhesion of A. coffeaeformis upon hydrophobic surfaces, a mechanism that may contribute significantly to the cells success in colonizing hydrophobic surfaces.  相似文献   

7.
The Pro-His-Ser-Arg-Asn (PHSRN) sequence in fibronectin is a second cell-binding site that synergistically affects Arg-Gly-Asp (RGD). The PHSRN peptide also induces cell invasion and accelerates wound healing. We report on the surface immobilization of PHSRN by spontaneous adsorption on polysiloxane thin films which have different surface free energy characteristics. Low-surface energy (hydrophobic) polysiloxane and the corresponding high-surface energy (hydrophilic) surfaces obtained by UV–ozone treatments were used as adsorbing substrates. The peptide adsorption process was investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Both adsorption kinetics and peptide rearrangement dynamics at the solid interface were significantly different on the surface-modified films compared to the untreated ones. Fibroblast cells cultures at short times and in a simplified environment, i.e., a medium-free solution, were prepared to distinguish interaction events at the interface between cell membrane and surface-immobilized peptide for the two cases. It turned out that the cell-adhesive effect of immobilized PHSRN was different for hydrophobic compared to hydrophilic ones. Early signatures of cell spreading were only observed on the hydrophilic substrates. These effects are explained in terms of different spatial arrangements of PHSRN molecules immobilized on the two types of surfaces.  相似文献   

8.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

9.
It was found that when an aqueous solution of vinyl monomers is polymerized on a hydrophobic substrate, obvious heterogeneity occurs in the region of the interface. This substrate effect was observed on polytetrafluroethylene (Teflon), polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyvinylchloride (PVC), but not on hydrophilic substrates. Compared with synthesis on hydrophilic surfaces, the surfaces of hydrogels synthesized on a hydrophobic substrate exhibit a larger degree of swelling, a lower surface coefficient of friction and elastic modulus, weaker interfacial adhesion, and reduced interaction with biological cells. This substrate effect has been observed for many types of aqueous monomer solutions. It was found that the above properties are related to the loosely cross-linked architecture, containing some graft-like polymer chains, that is formed on the gel surface when the gel is prepared on a hydrophobic substrate. To understand the mechanism of the substrate effect, two novel optical methods, electric speckle pattern interferometry (ESPI) and real-time laser sheet refraction (RT-LSR), were developed. It was found that oxygen trapped in the composite interface between the monomer solution and rough hydrophobic substrates played an important role in the substrate effect.  相似文献   

10.
Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials.  相似文献   

11.
We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.  相似文献   

12.
Infrared-visible sum frequency generation (SFG) vibrational spectroscopy, in combination with fluorescence microscopy, was employed to investigate the surface structure of lysozyme, fibrinogen, and bovine serum albumin (BSA) adsorbed on hydrophilic silica and hydrophobic polystyrene as a function of protein concentration. Fluorescence microscopy shows that the relative amounts of protein adsorbed on hydrophilic and hydrophobic surfaces increase in proportion with the concentration of protein solutions. For a given bulk protein concentration, a larger amount of protein is adsorbed on hydrophobic polystyrene surfaces compared to hydrophilic silica surfaces. While lysozyme molecules adsorbed on silica surfaces yield relatively similar SFG spectra, regardless of the surface concentration, SFG spectra of fibrinogen and BSA adsorbed on silica surfaces exhibit concentration-dependent signal intensities and peak shapes. Quantitative SFG data analysis reveals that methyl groups in lysozyme adsorbed on hydrophilic surfaces show a concentration-independent orientation. However, methyl groups in BSA and fibrinogen become less tilted with respect to the surface normal with increasing protein concentration at the surface. On hydrophobic polystyrene surfaces, all proteins yield similar SFG spectra, which are different from those on hydrophilic surfaces. Although more protein molecules are present on hydrophobic surfaces, lower SFG signal intensity is observed, indicating that methyl groups in adsorbed proteins are more randomly oriented as compared to those on hydrophilic surfaces. SFG data also shows that the orientation and ordering of phenyl rings in the polystyrene surface is affected by protein adsorption, depending on the amount and type of proteins.  相似文献   

13.
Irreversible adsorption of poly(vinyl alcohol) (PVA) on hydrophobic, porous poly(vinylidene fluoride) (PVDF) membranes was carried out using aqueous PVA solution. Water permeation was observed in PVDF microporous membranes after PVA adsorption, and maximum permeability was obtained after treatment with 4% PVA solution. Water permeability increased linearly with increasing PVA concentration up to 4%, and then a marginal decrease with a further increase in PVA concentration occurred. PVA adsorbed PVDF membranes were subjected to intense physicochemical analysis, especially with XPS. XPS results display the presence of an interface between PVA and PVDF, and the binding energy (BE) of the interface is low for the PVDF membranes treated with 4% PVA. Carbon from CF2-groups and F 1s core level clearly showed a decrease in its content on the surface after PVA adsorption and showed a minimum fluorine content at 4% PVA. F 1s BE shifts by 0.5 eV upon PVA adsorption and is independent of PVA concentration. EDAX analysis indicates that the bulk oxygen content remains within 4.5 +/- 0.6% and is independent of the PVA concentration. Nonetheless, a large amount of surface atom percentage of oxygen (20 +/- 4%) from O 1s core level shows an increase in PVA content on the surface of PVDF, and it is restricted mostly to the surface. The 4% PVA treated PVDF membrane clearly shows a broadening of O 1s core level to lower BE and indicates the interaction between PVDF and PVA which is significantly different compared to any other compositions. A new valence band feature at low BE, which is nonexistent on PVDF, develops after PVA adsorption. This indicates that the shift in the nature of the highest occupied molecular orbital (HOMO) derived mostly from oxygen; simultaneously, a suppression in the PVDF derived band indicates the change in nature of the PVA adsorbed surfaces from hydrophobic to hydrophilic. The above observations also suggest an irreversible electronic interaction between PVA and PVDF, possibly through charge transfer.  相似文献   

14.
The adsorption of the cationic surfactant, hexadecyl trimethyl ammonium bromide, C16TAB, onto model cellulose surfaces, prepared by Langmuir-Blodgett deposition as thin films, has been investigated by neutron reflectivity. Comparison between the adsorption of C16TAB onto hydrophilic silica, a hydrophobic cellulose surface, and a regenerated (hydrophilic) cellulose surface is made. Adsorption onto the hydrophilic silica and onto the hydrophilic cellulose surfaces is similar, and is in the form of surface aggregates. In contrast, the adsorption onto the hydrophobic cellulose surface is lower and in the form of a monolayer. The impact of the surfactant adsorption and the in situ surface regeneration on the structure of the cellulose thin films and the nature of solvent penetration into the cellulose films are also investigated. For the hydrophobic cellulose surface, intermixing between the cellulose and surfactant occurs, whereas there is little penetration of surfactant into the hydrophilic cellulose surface. Measurements show that solvent exchange between the partially hydrated cellulose film and the solution is slow on the time scale of the measurements.  相似文献   

15.
Many applications would benefit from an understanding of the physical mechanism behind fluid movement on rough surfaces, including the movement of water or contaminants within an unsaturated rock fracture. Presented is a theoretical investigation of the effect of surface roughness on fluid spreading. It is known that surface roughness enhances the effects of hydrophobic or hydrophilic behavior, as well as allowing for faster spreading of a hydrophilic fluid. A model is presented based on the classification of the regimes of spreading that occur when fluid encounters a rough surface: microscopic precursor film, mesoscopic invasion of roughness and macroscopic reaction to external forces. A theoretical relationship is developed for the physical mechanisms that drive mesoscopic invasion, which is used to guide a discussion of the implications of the theory on spreading conditions. Development of the analytical equation is based on a balance between capillary forces and frictional resistive forces. Chemical heterogeneity is ignored. The effect of various methods for estimating viscous dissipation is compared to available data from fluid rise on roughness experiments. Methods that account more accurately for roughness shape better explain the data as they account for more surface friction; the best fit was found for a hydraulic diameter approximation. The analytical solution implies the existence of a critical contact angle that is a function of roughness geometry, below which fluid will spread and above which fluid will resist spreading. The resulting equation predicts movement of a liquid invasion front with a square root of time dependence, mathematically resembling a diffusive process.  相似文献   

16.
Adhesive and frictional forces between surfaces modified with self-assembled monolayers (SAMs) and immersed in solvents were measured with chemical force microscopy as functions of surface functionality and solvent. Si/SiO2 substrates were modified with SAMs of alkylsiloxanes (SiCl3(CH2)n-X), and gold-coated AFM tips were modified with SAMs of alkylthiolates (HS-(CH2)n-X). SAMs of alkylsiloxanes terminated in a methyl or oxidized vinyl group; SAMs of alkanethiolates terminated in a methyl or carboxyl group. Adhesive and frictional forces were measured in hexadecane, ethanol, 1,2-propanediol, 1,3-propanediol, and water. The work of adhesion (W) was calculated with the Johnson-Kendall-Roberts theory of adhesive contact. The JKR values agreed well with values derived from the Fowkes-van Oss-Chaudhury-Good surface tension model and from contact angle results. Calculated values of W for all combinations of contacting surfaces and solvents spanned two orders of magnitude. W correlated with the surface tension of the solvent for hydrophobic/hydrophobic interactions; hydrophilic/hydrophilic and hydrophobic/hydrophilic interactions were more complex. Friction forces were fit to a modified form of Amonton's law. For any solvent, friction coefficients were largest for the hydrophilic/hydrophilic contacting surfaces. The friction coefficient for any contacting pair was largest in hexadecane. In polar solvents, friction coefficients scaled with solvent polarity only for hydrophobic/hydrophobic contacting pairs. Copyright 1999 Academic Press.  相似文献   

17.
The spreading and recoiling of water drops on several flat and macroscopically smooth model surfaces and on sized paper surfaces were studied over a range of drop impaction velocities using a high-speed CCD camera. The water drop spreading and recoiling results on several model hydrophobic and hydrophilic surfaces were found to be in agreement with observations reported in the literature. The maximum drop spreading diameter for those model surfaces at impact was found to be dependent upon the initial drop kinetic energy and the degree of hydrophobicity/hydrophilicity of the surface. The extent of the maximum drop recoiling was found to be much weaker for hydrophilic substrates than for hydrophobic substrates. Sized papers, however, showed an interesting switch of behaviour in the process of water drop impaction. They behave like a hydrophobic substrate when a water drop impacts on it, but like a hydrophilic substrate when water drop recoils. Although the contact angle between water and hydrophilic or hydrophobic non-porous surfaces changes from advancing to receding as reported in literature, the change of contact angle during water impact on paper surface is unique in that the level of sizing was found to have a smaller than expected influence on the degree of recoil. Atomic force microscopy (AFM) was used to probe fibres on a sized filter paper surface under water. The AFM data showed that water interacted strongly with the fibre even though the paper was heavily sized. Implications of this phenomenon were discussed in the context of inkjet print quality and of the surface conditions of sized papers. Results of this study are very useful in the understanding of inkjet ink droplet impaction on paper surfaces which sets the initial condition for ink penetration into paper after impaction.  相似文献   

18.
Using all-atomistic MD simulations including explicit water, the mobility and adhesion of a mildly hydrophobic single polypeptide chain adsorbed on hydrophobic and hydrophilic diamond surfaces is investigated by application of lateral and vertical pulling forces. Forced motion on the hydrophilic surface exhibits stick-slip due to breaking and reformation of hydrogen bonds; in contrast, on the hydrophobic surface, the motion is smooth. By carefully tuning the driving force magnitude, the linear-response regime is reached on a hydrophobic surface and equilibrium values for mobility and adhesive strength are obtained. On the hydrophilic surface, on the other hand, slow hydrogen-bond kinetics prevents equilibration and only upper bounds for adhesion force and mobility can be estimated. Whereas the desorption force is rather comparable on the two surfaces and differs at most by a factor of 2, the mobility on the hydrophilic surface is at least 30-fold reduced compared to the hydrophobic one. A simple model based on a single particle diffusing in a corrugated potential landscape suggests that cooperativity is rather limited and that the small mobility on a hydrophilic surface can be rationalized in terms of incoherently moving monomers. The experimentally well-known peptide mobility in bulk water is quantitatively reproduced in our simulations, which serves as a sensitive test on our methodology employed.  相似文献   

19.
Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C(36)H(74) or n-alcohol C(35)H(71)OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together with a partial drying of the surfaces are more indicative of the hydrophobic effect than structural ordering, which we suggest to be independent of surface topology.  相似文献   

20.
The capillary electrokinetics method (measurements of streaming potential and current in original and hydrophobized fused quartz capillaries with radii of 5–7 μm) is employed to study the formation of adsorption layers upon contact with solutions containing a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). It is shown that polyelectrolyte adsorption causes the charge reversal of both hydrophilic and hydrophobic surfaces, with a smaller amount of the substance being adsorbed on the hydrophobic than on the hydrophilic surface. The adsorption on both surfaces increases with the polymer solution concentration. The cationic polyelectrolyte adsorption on the pure quartz surface occurs mainly due to the electrostatic attraction, while, in the case of the hydrophobic surface, the contribution of hydrophobic interactions increases. The study of the layer deformability shows that, on the hydrophilic surfaces, the layer ages and its structure depends on the polymer solution concentration. On the modified surface, the deformation of even freshly formed layers is slight, which suggests that a denser layer is formed on the hydrophobic surface. In contrast to the hydrophilic surface, the polyelectrolyte is partly desorbed from the hydrophobic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号