首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate that anisotropic semiconductor nanocrystals display localized surface plasmon resonances that are dependent on the nanocrystal shape and cover a broad spectral region in the near-IR wavelengths. In-plane and out-of-plane dipolar resonances were observed for colloidal dispersions of Cu(2-x)S nanodisks, and the wavelengths of these resonances are in good agreement with calculations carried out in the electrostatic limit. The wavelength, line shape, and relative intensities of these plasmon bands can be tuned during the synthetic process by controlling the geometric aspect ratio of the disk or using a postsynthetic thermal-processing step to increase the free carrier densities.  相似文献   

2.
Transition-metal oxide nanocrystals are interesting candidates for localized surface plasmon resonance hosts because they exhibit fascinating properties arising from the unique character of their outer-d valence electrons. WO(3-δ) nanoparticles are known to have intense visible and near-IR absorption, but the origin of the optical absorption has remained unclear. Here we demonstrate that metallic phases of WO(3-δ) nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasmonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.  相似文献   

3.
The peak location of the localized surface plasmon resonance (LSPR) of noble metal nanoparticles is highly dependent upon the refractive index of the nanoparticles' surrounding environment. In this study, new phenomena are revealed by exploring the influence of interacting molecular resonances and nanoparticle resonances. The LSPR peak shift and line shape induced by a resonant molecule vary with wavelength. In most instances, the oscillatory dependence of the peak shift on wavelength tracks with the wavelength dependence of the real part of the refractive index, as determined by a Kramers-Kronig transformation of the molecular resonance absorption spectrum. A quantitative assessment of this shift based on discrete dipole approximation calculations shows that the Kramers-Kronig index must be scaled in order to match experiment.  相似文献   

4.
Xu BB  Ma ZC  Wang H  Liu XQ  Zhang YL  Zhang XL  Zhang R  Jiang HB  Sun HB 《Electrophoresis》2011,32(23):3378-3384
A surface-enhanced Raman scattering (SERS)-active microfluidic device with tunable surface plasmon resonances is presented here. It is constructed by silver grating substrates prepared by two-beam laser interference of photoresists and subsequent metal evaporation coating, as well as PDMS microchannel derived from soft lithography. By varying the period of gratings from 200 to 550 nm, surface plasmon resonances (SPRs) from the metal gratings could be tuned in a certain range. When the SPRs match with the Raman excitation line, the highest enhancement factor of 2×10(7) is achieved in the SERS detection. The SERS-active microchannel with tunable SPRs exhibits both high enhancement factor and reproducibility of SERS signals, and thus holds great promise for applications of on-chip SERS detection.  相似文献   

5.
A mutant yeast phenylalanine transfer RNA (ytRNAPheAAA) containing a modified (AAA) anticodon was generated to explore the feasibility of breaking the degeneracy of the genetic code in Escherichia coli. By using an E. coli strain co-transformed with ytRNAPheAAA and a mutant yeast phenylalanyl-tRNA synthetase, we demonstrate efficient replacement of phenylalanine (Phe) by L-3-(2-naphthyl)alanine (Nal) at UUU, but not at UUC codons.  相似文献   

6.
The optical properties of gold rods electrochemically deposited in anodic aluminum oxide templates have been investigated. Homogeneous suspensions of rods with an average diameter of 85 nm and varying lengths of 96, 186, 321, 465, 495, 578, 641, 735, and 1175 nm were fabricated. The purity and dimensions of these rod nanostructures allowed us to observe higher-order multipole resonances for the first time in a colloidal suspension. The experimental optical spectra agree with discrete dipole approximation calculations that have been modeled from the dimensions of the gold nanorods.  相似文献   

7.
This paper reports the utilization of triangular silver nanoplates (TSNPs) to enhance the sensitivity of surface plasmon resonance (SPR) biosensor. TSNPs modified with 3-mercaptopropinic acid (MPA) were simply mixed with chitosan and glutaraldehyde to form TSNPs/chitosan composite. The composite was deposited on Au film as immobilization substrate for SPR biosensor. The novel structures of TSNPs are preserved against etching by MPA and chitosan polymer. Moreover, chitosan cross-linked by glutaraldehyde enables antibody to be immobilized on fabricated substrate directly via Schiff alkali reaction. In the optimized conditions, the resulting biosensor based on TSNPs/chitosan composite shows a satisfactory response to bovine IgG in the concentration range of 0.075–40.00 μg mL−1. While the biosensor based on chitosan without TSNPs shows a response in the concentration range of 0.6–40 μg mL−1 and the biosensor based on Au film shows a response in the concentration range of 2.5–40 μg mL−1. The experiment results show that the sensitivity of SPR biosensor based on TSNPs/chitosan composite was significantly enhanced and the immobilization procedure of antibody was simplified.  相似文献   

8.
Single crystal, silver particles of 215 +/- 10 nm size were synthesized in solution using the hydrogen reduction method and were characterized by UV-visible extinction spectroscopy and electron microscopy. The extinction spectra reveal the presence of higher order multipoles of the plasmon resonance, such as quadrupole, octupole, and hexadecapole, in addition to the dipole. The formation of higher order multipoles was continuously monitored during the particles growth. Mie extinction calculations were performed and are in good agreement with the measured extinction spectra. The frequency shift of all plasmon modes was measured as a function of the refractive index of the surrounding dielectric medium.  相似文献   

9.
We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.  相似文献   

10.
The line shape of the plasmon resonance in a cold, small sodium cluster (Na8) is calculated taking into account its coupling to the quantal quadrupole fluctuations of the cluster shape. This coupling is found to give rise to a small damping factor (Γ/?ω1~0.03, where ?ω1 denotes the energy centroid and Γ the full width at half maximum of the resonance), and to an asymmetric line shape with Gaussian behaviour in the wings.  相似文献   

11.
The purpose of this paper is to provide an exact evaluation of the configurational degeneracy when an arbitrary number (k) of dipoles are placed in a quasi-two-dimensional space (Q2D). This Q2D is made up of three contiguous diagonals 3 × N. Our Q2D space gives to the central sites of the lattice their full coordination number of nearest neighboring compartments. We are going to determine the exact configurational degeneracy W(k, N) when an arbitrary number k of the above mentioned particles are placed in this 3 × NQ2D space. We found that W(k, N) is exactly described by
W(k,N) = 8W(k-1,N-1)-8W(k-2,N-2)+W(k,N-1){W(k,N) = 8W(k-1,N-1)-8W(k-2,N-2)+W(k,N-1)}  相似文献   

12.
The plasmon response of a spherical metallic shell becomes significantly more complex as its size is increased beyond the quasistatic limit. With increasing size and decreasing aspect ratio (r1/r2), higher order multipolar modes contribute in a more dominant manner, and two distinct core-shell geometries exist that provide the same dipole plasmon resonance, with differing relative multipolar contributions in their overall spectral response. With further increase in particle size, the geometric tunability of the core-shell structure disappears, and in the infinite radius limit the plasmon response is consistent with that of a thin metallic film.  相似文献   

13.
The optical response of multibranched gold nanoparticles is studied by means of electron energy-loss spectroscopy (EELS) in aberration corrected STEM mode. In every case the plasmon response is constant and variations in the maxima positions were found to be dependent on the branches aspect ratio. The good spatial resolution combined with the high energy resolution (0.18 eV) of the monochromated electron beam allows mapping the different plasmonic modes along the entire nanoparticles ranging from 0.7 eV up to 2.25 eV.  相似文献   

14.
We report here a multistep route for the immobilization of DNA and proteins on chemically modified gold substrates using fourth-generation NH(2)-terminated poly(amidoamine) dendrimers supported by an underlying amino undecanethiol (AUT) self-assembled monolayer (SAM). Bioactive ultrathin organic films were prepared via layer-by-layer self-assembly methods and characterized by fluorescence microscopy, variable angle spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the AUT SAM base layer on the gold substrates was determined to be 1.3 nm from ellipsometry. Fluorescence microscopy and AFM measurements, in combination with analyses of the XPS/ATR-FTIR spectra, confirmed the presence of the dendrimer/biopolymer molecules on the multilayer sensor surfaces. Model proteins, including streptavidin and rabbit immunoglobulin proteins, were covalently attached to the dendrimer layer using linear cross-linking reagents. Through surface plasmon resonance measurements, we found that sensor surfaces containing a dendrimer layer displayed an increased protein immobilization capacity, compared to AUT SAM sensor surfaces without dendrimer molecules. Other SPR studies also revealed that the dendrimer-based surfaces are useful for the sensitive and specific detection of DNA-DNA interactions. Significantly, the multicomponent films displayed a high level of stability during repeated regeneration and hybridization cycles, and the kinetics of the DNA-DNA hybridization process did not appear to be influenced by surface mass transport limiting effects.  相似文献   

15.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

16.
Rapid adsorption kinetics have been observed for protein binding to a 800 nm aggregated nanoparticle, showing extreme sensitivity resulting from a non-linear particle plasmon response.  相似文献   

17.
The synthesis and optical properties of single crystalline gold nanoprisms have been investigated. A three-step mediated seed growth process in an aqueous solution generated gold nanoprisms with a relatively homogeneous size distribution. The purity of these nanostructures has allowed us to observe a weak quadrupole resonance in addition to a strong dipole resonance associated with these novel structures. The experimental optical spectra agree with discrete dipole approximation calculations that have been modeled from the dimensions of gold nanoprisms produced in this synthesis.  相似文献   

18.
We report in this study the presence of Janus particles, which are candidates for use with electronic color papers. We used negatively charged polystyrene particles (370 nm) as the core particles, and gold was then sputtered onto their packed monolayer under several conditions. The sputtered particles were next redispersed into the aqueous medium by gentle sonication. Gold nanoparticles localized on one side of the cores could also serve as seeds for subsequent shell growth by electroless gold plating. Through these treatments, a series of well-dispersed Janus particles were obtained with gold nanostructures of different size and shape only on one side. Their dispersions showed different colors originating from the surface plasmon resonance absorption of gold nanoparticles localized on the hemisphere. The particles obtained by this approach have potential applications such as in sensors and electronic color paper.  相似文献   

19.
Triangular silver nanoparticles ( approximately 100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, lambda(max) of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local ( approximately 10-30 nm) external dielectric environment. This sensitivity of the LSPR lambda(max) to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin-streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR lambda(max). The LSPR lambda(max) shift, DeltaR/DeltaR(max), versus [SA] response curve was measured over the concentration range 10(-)(15) M < [SA] < 10(-)(6) M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant affinities yielded approximate values for the saturation response, DeltaR(max) = 26.5 nm, and the surface-confined thermodynamic binding constant K(a,surf) = 10(11) M(-)(1). At present, the limit of detection (LOD) for the LSPR nanobiosensor is found to be in the low-picomolar to high-femtomolar region. A strategy to amplify the response of the LSPR nanobiosensor using biotinylated Au colloids and thereby further improve the LOD is demonstrated. Several control experiments were performed to define the LSPR nanobiosensor's response to nonspecific binding as well as to demonstrate its response to the specific binding of another protein. These include the following: (1) electrostatic binding of SA to a nonbiotinylated surface, (2) nonspecific interactions of prebiotinylated SA to a biotinylated surface, (3) nonspecific interactions of bovine serum albumin to a biotinylated surface, and (4) specific binding of anti-biotin to a biotinylated surface. The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.  相似文献   

20.
Nanoscale uniform films containing gold nanoparticle and polyelectrolyte multilayer structures were fabricated by the using spin-assembly or spin-assisted layer-by-layer (SA-LbL) deposition technique. These SA-LbL films with a general formula [Au/(PAH-PSS)nPAH]m possessed a well-organized microstructure with uniform surface morphology and high surface quality at a large scale (tens of micrometers across). Plasmon resonance peaks from isolated nanoparticles and interparticle interactions were revealed in the UV-visible extinction spectra of the SA-LbL films. All films showed the strong extinction peak in the region of 510-550 nm, which is due to the plasmon resonance of the individual gold nanoparticles redshifted because of a local dielectric environment. For films with sufficient density of gold nanoparticles within the layers, the second strong peak was consistently observed between 620 and 660 nm, which is the collective plasmon resonance from intralayer interparticle coupling. Finally, we suggested that, for certain film designs, interlayer interparticle resonance might be revealed as an independent contribution at 800 nm in UV-visible spectra. The observation of independent and concurrent individual, intralayer, and interlayer plasmon resonances can be critical for sensing applications, which involve monitoring of optomechanical properties of ultrathin optically active compliant membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号