首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex Ni(II)(1,8,-di-2-propenyl-1,4,8,11-tetraazacyclotetradecane)(2+), (NiL(1))(2+), was synthesized. X-ray crystallography demonstrates that the complex obtained is the trans-III isomer. The allylic substituents shift the redox couples (NiL(1))(3+/2+) and (NiL(1))(2+/+) anodically relative to the corresponding couples for Ni(II)(1,4,8,11-tetraazacyclotetradecane)(2+), (NiL(2))(2+), as expected. Surprisingly, the lifetime of (NiL(1))(+) in neutral aqueous solutions is shorter than that of (NiL(2))(+). Pulse radiolysis experiments reveal that the allylic substituents are reduced by the central Ni(I) ion. The first step in this reduction is a general acid catalyzed process. The results suggest that this step involves schematically the reaction Ni(I)[bond]NCH(2)CH[double bond]CH(2)(+) + H(+) --> Ni(III)[bond]NCH2CH2CH(2)(2+). The latter transient decomposes slowly with a half-life time of several minutes. Preliminary results support the suggestion that (NiL(2))(+), or other Ni(I)L complexes of this family, might reduce many alkenes present in the solution.  相似文献   

2.
Ou GC  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(7):2710-2718
The reactions of a racemic four-coordinated nickel(II) complex [Ni(alpha-rac-L)](ClO4)2 (containing equal amount of SS and RR enantiomers) with l- and d-phenylalanine in acetonitrile/water gave two less-soluble six-coordinated enantiomers of {[Ni( f-SS-L)(l-Phe)](ClO4)}n (Delta-1) and {[Ni(f- RR-L)(d-Phe)](ClO4)}n (Lambda-1), respectively. Evaporation the remaining solutions gave two six-coordinated diastereomers of {[Ni 3(f- RR-L)3(l-Phe)2(H 2O)](ClO4)4}n (a-2) and {[Ni3(f- SS-L)3(d-Phe)2(H2O)](ClO4)4}n (b-2), respectively (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Phe(-) = phenylalanine anion). The reaction of [Ni(alpha-rac-L)](ClO4)2 with dl-Phe(-) gave a conglomerate of c-1; in which, the SS and RR enantiomers preferentially coordinate to l- and d-Phe(-) respectively to give a racemic mixture of Delta-1 and Lambda-1, and the spontaneous resolution occurs during the reaction, in which each crystal crystallizes to become enantiopure. Removing Phe(-) from Delta-1 and Lambda-1 using perchloric acid gave two enantiomers of [Ni(alpha-SS-L)](ClO4)2 (S-3) and [Ni(alpha-RR-L)](ClO4)2 (R-3). Dissolving S-3 and R-3 in acetonitrile gave two six-coordinated enantiomers of [Ni( f-SS-L)(CH3CN)2](ClO4)2 (S-4) and [Ni( f- RR-L)(CH3CN)2](ClO4)2 (R-4), while dissolving [Ni(alpha-rac-L)](ClO4)2 in acetonitrile gave a racemic twining complex [Ni(f-rac-L)(CH3CN)2](ClO4)2 (rac-4). Delta-1 and Lambda-1 belong to supramolecular stereoisomers, which are constructed via hydrogen bond linking of [Ni( f-SS-L)(l-Phe)](+) and [Ni(f-RR-L)(d-Phe)](+) monomers to form 1D homochiral right-handed and left-handed helical chains, respectively. The reaction of S-3 with d-Phe(-) gave {[Ni(f-SS-L)(d-Phe)](ClO4)}n (5), which shows a motif of a 1D hydrogen bonded zigzag chain instead of a 1D helical chain. Compound a-2/ b-2 contains dimers of [{Ni(f-RR-L)}2(l-Phe)(H2O)](3+)/[{Ni( f- SS-L)}2(d-Phe)(H2O)](3+) and 1D zigzag chains of {[Ni(f-RR-L)(l-Phe)](+)}n /{[Ni(f-SS-L)(d-Phe)](+) n . The homochiral nature of Delta-1/Lambda-1, a-2/b-2, S-3/R-3, and S-4/R-4 are confirmed by the results of circular dichroism (CD) spectra measurements.  相似文献   

3.
The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.  相似文献   

4.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

5.
The course of methyl iodide oxidative addition to various nucleophilic complexes, [Ir2(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (1), [IrRh(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (2), and [Rh2(mu-1,8-(NH)2naphth)(CO)2(PR3)2] (R = iPr, 3; Ph, 4; p-tolyl, 5; Me, 6), has been investigated. The CH3I addition to complex 1 readily affords the diiridium(II) complex [Ir2(mu-1,8-(NH)2naphth)I(CH3)(CO)2(PiPr3)2] (7), which undergoes slow rearrangement to give a thermodynamically stable stereoisomer, 8. The reaction of the Ir-Rh complex 2 gives the ionic compound [IrRh(mu-1,8-(NH)2naphth)(CH3)(CO)2(PiPr3)2]I (10). The dirhodium compounds, 3-5, undergo one-center additions to yield acyl complexes of the formula (Rh2(mu-1,8-(NH)2naphth)I(COCH3)(CO)(PR3)2] (R = iPr, 12; Ph, 13; p-tolyl, 14). The structure of 12 has been determined by X-ray diffraction. Further reactions of these Rh(III)-Rh(I) acyl derivatives with CH3I are productive only for the p-tolylphosphine derivative, which affords the bis-acyl complex [Rh2(mu-1,8-(NH)2naphth)(CH3CO)2I2(P(p-tolyl)3)2] (15). The reaction of the PMe3 derivative, 6, allows the isolation of the bis-methyl complex [Rh2(mu-1,8-(NH)2naphth)(mu-I)(CH3)2(CO)2(PMe3)2]I (16a), which emanates from a double one-center addition. Upon reaction with methyl triflate, the starting materials, 1, 2, 3, and 6, give the isostructural cationic methyl complexes 9, 11, 17, and 18, respectively. The behavior of these cationic methyl compounds toward CH3I, CH3OSO2CF3, and tetrabutylamonium iodide is consistent with the role of these species as intermediates in the SN2 addition of CH3I. Compounds 18 and 17 react with an excess of methyl triflate to give [Rh2(mu-1,8-(NH)2naphth)(mu-OSO2CF3)(CH3)2(CO)2(PMe3)2][CF3SO3] (19) and [Rh2(mu-1,8-(NH)2naphth)(OSO2CF3)(COCH3)(CH3)(CO)(PiPr3)2][CF3SO3] (20), respectively. Upon treatment with acetonitrile, complexes 17 and 18 give the isostructural cationic acyl complexes [Rh2(mu-1,8-(NH)2naphth)(COCH3)(NCCH3)(CO)(PR3)2][CF3SO3] (R = iPr, 21; Me, 22). A kinetic study of the reaction leading to 21 shows that formation of these complexes involves a slow insertion step followed by the fast coordination of the acetonitrile. The variety of reactions found in this system can be rationalized in terms of three alternative reaction pathways, which are determined by the effectiveness of the interactions between the two metal centers of the dinuclear complex and by the steric constraints due to the phosphine ligands.  相似文献   

6.
Divalent and trivalent nickel complexes of 1,4,8,11-tetraazacyclotetradecane, denoted as cyclam hereafter, coordinated by methyl coenzyme M (MeSCoM(-)) and coenzyme M (HSCoM(-)) have been synthesized in the course our model studies of methyl coenzyme M reductase (MCR). The divalent nickel complexes Ni(cyclam)(RSCoM)(2) (R = Me, H) have two trans-disposed RSCoM(-) ligands at the nickel(II) center as sulfonates, and thus, the nickels have an octahedral coordination. The SCoM(2-) adduct Ni(cyclam)(SCoM) was also synthesized, in which the SCoM(2-) ligand chelates the nickel via the thiolate sulfur and a sulfonate oxygen. The trivalent MeSCoM adduct [Ni(cyclam)(MeSCoM)(2)](OTf) was synthesized by treatment of [Ni(cyclam)(NCCH(3))(2)](OTf)(3) with ((n)Bu(4)N)[MeSCoM]. A similar reaction with ((n)Bu(4)N)[HSCoM] did not afford the corresponding trivalent HSCoM(-) adduct, but rather the divalent nickel complex polymer [-Ni(II)(cyclam)(CoMSSCoM)-](n) was obtained, in which the terminal thiol of HSCoM(-) was oxidized to the disulfide (CoMSSCoM)(2-) by the Ni(III) center.  相似文献   

7.
8.
The dependence of the properties of mixed ligand [Ni(II)(2)L(μ-O(2)CR)](+) complexes (where L(2-) represents a 24-membered macrocyclic hexaamine-dithiophenolato ligand) on the basicity of the carboxylato coligands has been examined. For this purpose 19 different [Ni(II)(2)L(μ-O(2)CR)](+) complexes (2-20) incorporating carboxylates with pK(b) values in the range 9 to 14 have been prepared by the reaction of [Ni(II)(2)L(μ-Cl)](+) (1) and the respective sodium or triethylammonium carboxylates. The resulting carboxylato complexes, isolated as ClO(4)(-) or BPh(4)(-) salts, have been fully characterized by elemental analyses, IR, UV/vis spectroscopy, and X-ray crystallography. The possibility of accessing the [Ni(II)(2)L(μ-O(2)CR)](+) complexes by carboxylate exchange reactions has also been examined. The main findings are as follows: (i) Substitution reactions between 1 and NaO(2)CR are not affected by the basicity or the steric hindrance of the carboxylate. (ii) Complexes 2-20 form an isostructural series of bisoctahedral [Ni(II)(2)L(μ-O(2)CR)](+) compounds with a N(3)Ni(μ-SR)(2)(μ-O(2)CR)NiN(3) core. (iii) They are readily identified by their ν(as)(CO) and ν(s)(CO) stretching vibration bands in the ranges 1684-1576 cm(-1) and 1428-1348 cm(-1), respectively. (iv) The spin-allowed (3)A(2g) → (3)T(2g) (ν(1)) transition of the NiOS(2)N(3) chromophore is steadily red-shifted by about 7.5 nm per pK(b) unit with increasing pK(b) of the carboxylate ion. (v) The less basic the carboxylate ion, the more stable the complex. The stability difference across the series, estimated from the difference of the individual ligand field stabilization energies (LFSE), amounts to about 4.2 kJ/mol [Δ(LFSE)(2,18)]. (vi) The "second-sphere stabilization" of the nickel complexes is not reflected in the electronic absorption spectra, as these forces are aligned perpendicularly to the Ni-O bonds. (vii) Coordination of a basic carboxylate donor to the [Ni(II)(2)L](2+) fragment weakens its Ni-N and Ni-S bonds. This bond weakening is reflected in small but significant bond length changes. (viii) The [Ni(II)(2)L(μ-O(2)CR)](+) complexes are relatively inert to carboxylate exchange reactions, except for the formato complex [Ni(II)(2)L(μ-O(2)CH)](+) (8), which reacts with both more and less basic carboxylato ligands.  相似文献   

9.
Acyclic pyrazine-2-carboxamide and thioether containing hexadentate ligand 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpzctb), in its deprotonated form, has afforded light brown [Ni(II)(bpzctb)](1)(S=1) and green [Cu(II)(bpzctb)](2)(S=1/2) complexes. The crystal structures of 1.CH(3)OH and 2.CH(2)Cl(2) revealed that in these complexes the ligand coordinates in a hexadentate mode, affording examples of distorted octahedral M(II)N(2)(pyrazine)N'(2)(amide)S(2)(thioether) coordination. Each complex exhibits in CH(2)Cl(2) a reversible to quasireversible cyclic voltammetric response, corresponding to the Ni(III)/Ni(II)(1) and Cu(II)/Cu(I)(2) redox process. The E(1/2) values reveal that the complexes of bpzctb(2-) are uniformly more anodic by approximately 0.2 V than those of the corresponding complexes with the analogous pyridine ligand, 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpctb), attesting that compared to pyridine, pyrazine is a better stabilizer of the Ni(ii) or Cu(i) state. Coulometric oxidation of the previously reported complex [Ni(II)(bpctb)] and 1 generates [Ni(III)(bpctb)](+) and [Ni(III)(bpzctb)](+) species, which exhibit a LMCT transition in the 470--480 nm region and axial EPR spectra corresponding to a tetragonally elongated octahedral geometry. Complex 2 exhibits EPR spectra characteristic of the d(z(2)) ground state.  相似文献   

10.
Treatment of [Ni(L)][L =((-)SCH(2)CH(2)NH[double bond, length as m-dash]C(CH(3))-)(2)] with Ag(+) in water gave a pinwheel-like S-bridged Ni(II)(3)Ag(I)(2) structure in [Ag(2)[Ni(L)](3)](2+), which further reacted with [Ni(L)] to produce a Ni(II)(4)Ag(I)(2) structure in [Ag(2)[Ni(L)](4)](2+) and a Ni(II)(7)Ag(I)(4) structure in [Ag(4)[Ni(L)](7)](4+).  相似文献   

11.
Time-resolved infrared (TRIR) flash photolytic techniques have been employed to initiate and observe the efficient dissociation of CO from a synthetic heme-CO/copper complex, [((6)L)Fe(II)(CO)..Cu(I)](+) (2), in CH(3)CN and acetone at room temperature. In CH(3)CN, a significant fraction of the photodissociated CO molecules transiently bind to copper (nu(CO)(Cu) = 2091 cm(-)(1)) giving [((6)L)Fe(II)..Cu(I)(CO)](+) (4), with an observed rate constant, k(1) = 1.5 x 10(5) s(-)(1). That is followed by a slower direct transfer of CO from the copper moiety back to the heme (nu(CO)(Fe) = 1975 cm(-)(1)) with k(2) = 1600 s(-)(1). Additional transient absorption (TA) UV-vis spectroscopic experiments have been performed monitoring the CO-transfer reaction by following the Soret band. Eyring analysis of the temperature-dependent data yields DeltaH(double dagger) = 43.9 kJ mol(-)(1) for the 4-to-2 transformation, similar to that for CO dissociation from [Cu(I)(tmpa)(CO)](+) in CH(3)CN (DeltaH(double dagger) = 43.6 kJ mol(-)(1)), suggesting CO dissociation from copper regulates the binding of small molecules to the heme within [((6)L)Fe(II)..Cu(I)](+)(3). Our observations are analagous to those observed for the heme(a3)/Cu(B) active site of cytochrome c oxidase, where photodissociated CO from the heme(a3) site immediately (ps) transfers to Cu(B) followed by millisecond transfer back to the heme.  相似文献   

12.
Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.  相似文献   

13.
Oxidative addition of the disulfide compounds naphtho[1,8-cd][1,2]dithiole, 2-tert-butylnaptho[1,8-cd][1,2]dithiole, 2,7-di-tert-butylnaphtho[1,8-cd][1,2]dithiole, 4,5-dithiaacephenanthrylene and the thio/sulfinyl and thio/sulfonyl compounds naphtho[1,8-cd][1,2]dithiole 1-oxide, and naphtho[1,8-cd][1,2]dithiole 1,1-dioxide respectively to [[Ir(mu-Cl)(cod)](2)] give dinuclear Ir-Ir bonded Ir(II) compounds [[IrCl(cod)](2)(mu(2)-1,8-S(2)-nap)] 1, [[IrCl(cod)](2)(mu(2)-1,8-S(2)-2-(t)Bu-nap)] 2, [[IrCl(cod)](2)(mu(2)-1,8-S(2)-2,7-di-(t)Bu-nap)]] 3, [[IrCl(cod)](2)(mu(2)-4,5-S(2)-phenan)] 4, [[IrCl(cod)](2)(mu(2)-1-S,8-[S(O)]-nap)] 5 and [[IrCl(cod)](2)(mu(2)-1-S,8-[S(O)(2)]-nap)] 6 where the di-sulfur ligands act as bridges between the two Ir(II) metal centres. The compounds were obtained in moderate to good yields as orange or deep red powders or crystalline solids. Five of the new complexes have been structurally characterised and were found to have Ir-Ir bond lengths in the range 2.7630(8) to 2.8113(11) A.  相似文献   

14.
Chiou TW  Liaw WF 《Inorganic chemistry》2008,47(17):7908-7913
The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.  相似文献   

15.
The synthesis and characterization of two neutrally charged bimetallic Ni(II) ethylene polymerization catalysts, {2,7-di-[2,6-(3,5-di-methylphenylimino)methyl]1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethylphosphine) [(CH(3) )FI(2) -Ni(2) ] and {2,7-di-[2,6-(3,5-di-trifluoromethyl-phenylimino)methyl]-1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethyl-phosphine) [(CF(3) )FI(2) -Ni(2) )], are reported. The diffraction-derived molecular structure of (CF(3) )FI(2) -Ni(2) reveals a Ni???Ni distance of 5.8024(5)??. In the presence of ethylene and Ni(COD)(2) or B(C(6) F(5) )(3) co-catalysts, these complexes along with their monometallic analogues [2-tert-butyl-6-((2,6-(3,5-dimethylphenyl)phenylimino)methyl)-phenolate]-Ni(II) -methyl(trimethylphosphine) [(CH(3) )FI-Ni] and [2-tert-butyl-6-((2,6-(3,5-ditrifluoromethyl-phenyl)phenylimino)methyl)phenolato]-Ni(II) -methyl-(trimethylphosphine) [(CF(3) )FI-Ni], produce polyethylenes ranging from highly branched M(w) =1400 oligomers (91?methyl branches per 1000?C) to low branch density M(w) =92?000 polyethylenes (7?methyl branches per 1000?C). In the bimetallic catalysts, Ni???Ni cooperative effects are evidenced by increased product polyethylene branching in ethylene homopolymerizations (~3× for (CF(3) )FI(2) -Ni(2) vs. monometallic (CF(3) )FI-Ni), as well as by enhanced norbornene co-monomer incorporation selectivity, with bimetallic (CH(3) )FI(2) -Ni(2) and (CF(3) )FI(2) -Ni(2) enchaining approximately three- and six-times more norbornene, respectively, than monometallic (CH(3) )FI-Ni and (CF(3) )FI-Ni. Additionally, (CH(3) )FI(2) -Ni(2) and (CF(3) )FI(2) -Ni(2) exhibit significantly enhanced thermal stability versus the less sterically encumbered dinickel catalyst {2,7-di-[(2,6-diisopropylphenyl)imino]-1,8-naphthalenediolato}-bis-Ni(II) (methyl)(trimethylphosphine). The pathway for bimetallic catalyst thermal deactivation is shown to involve an unexpected polymerization-active intermediate, {2,7-di-[2,6-(3,5-di-trifluoromethyl-phenylimino)methyl]-1-hydroxy,8-naphthalenediolato-Ni(II) (methyl)-(trimethylphosphine).  相似文献   

16.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methyl-coenzyme M (CH(3)S-CH(2)CH(2)SO(3)) from methane. The active site is a nickel tetrahydrocorphinoid cofactor, factor 430, which in inactive form contains EPR-silent Ni(II). Two such forms, denoted MCR(silent) and MCR(ox1)(-)(silent), were previously structurally characterized by X-ray crystallography. We describe here the cryoreduction of both of these MCR forms by gamma-irradiation at 77 K, which yields reduced protein maintaining the structure of the oxidized starting material. Cryoreduction of MCR(silent) yields an EPR signal that strongly resembles that of MCR(red1), the active form of MCR; and stepwise annealing to 260-270 K leads to formation of MCR(red1). Cryoreduction of MCR(ox1)(-)(silent) solutions shows that our preparative method for this state yields enzyme that contains two major forms. One behaves similarly to MCR(silent), as shown by the observation that both of these forms give essentially the same redlike EPR signals upon cryoreduction, both of which give MCR(red1) upon annealing. The other form is assigned to the crystallographically characterized MCR(ox1)(-)(silent) and directly gives MCR(ox1) upon cryoreduction. X-band spectra of these cryoreduced samples, and of conventionally prepared MCR(red1) and MCR(ox1), all show resolved hyperfine splitting from four equivalent nitrogen ligands with coupling constants in agreement with those determined in previous EPR studies and from (14)N ENDOR of MCR(red1) and MCR(ox1). These experiments have confirmed that all EPR-visible forms of MCR contain Ni(I) and for the first time generated in vitro the EPR-visible, enzymatically active MCR(red1) and the activate-able "ready" MCR(ox1) from "silent" precursors. Because the solution Ni(II) species we assign as MCR(ox1)(-)(silent) gives as its primary cryoreduction product the Ni(I) state MCR(ox1), previous crystallographic data on MCR(ox1)(-)(silent) allow us to identify the exogenous axial ligand in MCR(ox1) as the thiolate from CoM; the cryoreduction experiments further allow us to propose possible axial ligands in MCR(red1). The availability of model compounds for MCR(red1) and MCR(ox1) also is discussed.  相似文献   

17.
Owen TM  Rohde JU 《Inorganic chemistry》2011,50(11):5283-5289
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(?1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.  相似文献   

18.
The complexes [Ni(YR)(triphos)]BPh(4) (Y = S, R = Ph or Et or Y = Se, R = Ph; triphos = (Ph(2)PCH(2)CH(2))(2)PPh) have been prepared and characterized, and the X-ray crystal structure of [Ni(SPh)(triphos)]BPh(4) has been solved. In MeCN, [Ni(YR)(triphos)](+) are protonated by [lutH](+) (lut = 2,6-dimethylpyridine) to give [Ni(YHR)(triphos)](2+). Studies on the kinetics of these equilibrium reactions reveal an unexpected difference in the reactivities of [Ni(SPh)(triphos)](+) and [Ni(SEt)(triphos)](+). In both cases, the reactions exhibit a first-order dependence on the concentration of complex. When R = Ph, the dependence on the concentrations of [lutH(+)] and lut is given by k(obs) = k(1)(Ph)[lutH(+)] + k(-1)(Ph)[lut], which is typical of an equilibrium reaction where k(1)(Ph) and k(-1)(Ph) correspond to the forward and back reactions, respectively. Analogous behavior is observed for [Ni(SePh)(triphos)](+). However, for [Ni(SEt)(triphos)](+), the kinetics are more complicated, and k(obs) = (k(1)k(2)[lutH(+)] + (k(-2) + k(2)))/(k(1)[lutH(+)] + k(-1)[lut]), which is indicative of a mechanism involving two coupled equilibria in which the initial protonation of the thiolate is followed by a unimolecular equilibrium reaction that is assumed to involve the formation of an eta(2)-EtS-H ligand. The difference in reactivity between the complexes with alkyl and aryl thiolate ligands is a consequence of the (Ni(triphos))(2+) site "leveling" the basicities of these ligands. The pK(a)'s of the PhSH and EtSH constituents coordinated to the (Ni(triphos))(2+) are 16.0 and 14.6, respectively, whereas the difference in pK(a)'s of free PhSH and EtSH differ by ca. 4 units. The pK(a) of [Ni(SeHPh)(triphos)](+) is 14.4. The more strongly sigma-donating EtS ligand makes the (Ni(triphos))(2+) core sufficiently electron-rich that the basicities of the sulfur and nickel in [Ni(SEt)(triphos)](+) are very similar; therefore, the proton serves as a bridge between the two sites. The relevance of these observations to the proposed mechanisms of nickel-based hydrogenases is discussed.  相似文献   

19.
A variety of phosphorus(V) octaethylporphyrin derivatives of the type [P(OEP)(X)(Y)](+)Z(-) (OEP: octaethylporphyrin) (X = CH(3), CH(2)CH(3), C(6)H(5), F; Y = CH(3), CH(2)CH(3), OH, OCH(3), OCH(2)CH(3), On-Pr, Oi-Pr, Osec-Bu, NHBu, NEt(2), Cl, F, O(-); Z = ClO(4), PF(6)) were prepared. X-ray crystallographic analysis of eleven compounds reveals that the degree of ruffling of the porphyrin core becomes greater and the average P-N bond distance becomes shorter as the axial ligands become more electronegative. Therefore, the electronic effect of the axial substituents plays a major role in determining the degree of ruffling although the steric effect of the substituents plays some role. A comparison of the (1)H NMR chemical shifts for the series of [P(OEP)(CH(2)CH(3))(Y)](+)Z(-) complexes with those of the corresponding arsenic porphyrins, which possess a planar core, indicates a much smaller ring current effect of the porphyrin core in the severely ruffled phosphorus porphyrins. The electrochemistry, spectroelectrochemistry and ESR spectroscopy of the singly reduced compounds are also discussed. The OH protons of [P(OEP)(X)(OH)](+) are acidic enough to generate P(OEP)(X)(O) by treatment with aq dilute NaOH. X-ray analysis of P(OEP)(CH(2)CH(3))(O) reveals that the PO bond length is very short (1.475(7) A) and is comparable to that in triphenylphosphine oxide (1.483 A). The features of the quite unique hexacoordinate hypervalent compounds are investigated by density functional calculation of a model (Por)P(CH(2)CH(3))(O) and (Por)P(F)(O) (Por: unsubstituted porphyrin).  相似文献   

20.
The title compound [(PPh3)(CH3COS)2NiB10H10]·0.4(C5H12) has been synthesized by the reaction of [NiCl2(PPh3)2], closo-[B10H10]2- and CH3COSH in CH2Cl2 solution. It was recrystallized from n-pentane/CH2Cl2 solution and its structure was determined by X-ray diffraction analysis. The crystal is triclinic, space group P1, Mr=618.23, with a=10.049(1), b=12.638(2), c=14.077(2) , α=110.13(1), β=87.65(1), γ=96.01(1)°, V=1669.3(4)(A)3, Dc=1.230 g/cm3, Z=2, λ(MoKα)=0.71073(A), μ=7.76 cm-1, F(000)=642. The final refinement is converged with R=0.042 (5986 observed reflections with I≥2σ(I)), wR2 =0.151. The cluster is a nido eleven-vertex {NiB10} cage with the Ni atom in the open NiB4 face. Cyclizations resulting in two five-membered rings, Ni(7)-S(1)-C(1)-O(1)-B(2) and Ni(7)-S(2)-C(2)-O(2)-B(3), have occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号