首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Takeuchi  T. Miwa 《Chromatographia》1995,41(5-6):148-152
Summary Fluorimetric detection in the presence of a stationary phase has been applied to gradient elution of dansyl amino acids in liquid chromatography. A 1.5 mm ID quartz tube packed with the same materials as the separation column was employed for the flow cell. Conventional-size columns were employed. The peak height of analytes increased with increasing retention owing to focusing and environmental effects of the stationary phase, leading to improvements in sensitivity, which was pronounced for analytes eluting late. The lower the gradient, the larger the improvement in sensitivity achieved. Detection limits were improved by a factor of up to 5.1 by fluorimetric detection using the packed flow cell, compared with those achieved using a common empty flow cell.  相似文献   

2.
Summary The dansylated amino acids alanine, glutamic acid, methionine and norleucine were separated by reversedphase HPLC and detected via chemical excitation using the post-column, TCPO-peroxyoxalate reaction system. Enhancement of the chemiluminescence emission was achieved by including the surfactant Triton X-100 in the eluent.  相似文献   

3.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

4.
Summary A general equation for the final retention of a solute chromatographed under conditions of stepwise gradient elution has been derived. The elution process and the distances travelled by solutes as a function of eluent volume were simulated by computer for the optimization of stepwise gradient prorams from isocratic HPLC data. The validity of the equations was experimentally veritied.  相似文献   

5.
Summary A computer-assisted method is presented for the optimization of separation in gradient elution reversed-phase HPLC. The method is based on a polynomial estimation from nine preliminary experiments according to a two-factor (initial solvent composition C and gradient time T) rectangular design. This is followed by a two-dimension computer scanning technique. Resolution is used as the selection criterion. Good agreement was obtained between predicted data and experimental results.  相似文献   

6.
The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed‐phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous‐organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.  相似文献   

7.
A simple gradient method for capillary column and micro high performance liquid chromatography using either single or multiple mixing chambers is presented. The gradient profile is dependent on the number of the mixing chambers. This system permits solvent gradient elution at flow rates less than 10 μl/min with satisfactory reproducibility.  相似文献   

8.
9.
G. Glöckner 《Chromatographia》1988,25(10):854-860
Summary Polystyrene samples of narrow molecular-weight distribution have been eluted according to their molecular weight from columns packed with bare silica Si50, phenyl, or C18 bonded phase by gradients of methanol and tetrahydrofuran (THF) or ofiso-octane and THF. Among the six combinations investigated,iso-octane/THF with a silica column formed a proper normal-phase system whereas methanol/THF with a C18 column formed a proper reversed-phase system. The combinations of C18 column andiso-octane/THF or of Si50 column and methanol/THF gradient did not correspond to the approved polarity rules in high-performance liquid chromatography but were nevertheless effective in separating polystyrene mixtures by molecular weight. Methanol andiso-octane are nonsolvents for polystyrene whereas THF is a solvent. The solubility of polystyrene as a function of molecular weight and concentration was determined by means of turbidimetric titration of solutions in THF with the nonsolvents used in the gradients. The solubility and elution characteristics were almost identical on C18 columns or in methanol/THF combinations. The elution from phenyl bonded phase and Si50 columns usingiso-octane/THF gradients required more THF than the solubility experiments. Information is also given on the occurrence of multimodal elution patterns.  相似文献   

10.
Polyoxyethylene(23)lauryl ether (known as Brij‐35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij‐35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β‐blockers, sulfonamides, and flavonoids, concerning the use of Brij‐35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij‐35 increases the polarity of the alkyl‐bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen‐bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij‐35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij‐35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution.  相似文献   

11.
Summary Equations describing multi-step gradient elution with a mobile phase of constant composition in each step were derived. These equations useful for calculating the retention volumes in both gradient HPLC and TLC were derived on the basis of the relationship between the isocratic capacity factor and the volume fraction of the organic modifier. The validity of the equations was experimentally verified in a LiChrosorbRP-18-water/methanol system for 11 methyl- and chlorobenzenes and phenols. A satisfactory agreement between the theoretical and experimental k′ values was found.  相似文献   

12.
Summary Proteins were visualized by postcolumn mixing with 2-p-toluidinyl-6-naphthalene sulfonate or 1-anilino-8-naphthalene sulfonate in size-exclusion chromatography. The indirect detection is based on fluorescence enhancement of the fluorescence probe owing to hydrophobic interaction with proteins. Bovine serum albumin gave the highest signal intensity among the proteins examined.  相似文献   

13.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear portions and the solute gradient retention time tR is calculated by means of an analytical expression arising from the fundamental equation of gradient elution. The validity of the proposed analytical expression and the methodology followed for the calculation of tR was tested using eight catechol-related solutes with mobile phases modified by methanol or acetonitrile. It was found that in all cases the accuracy of the predicted gradient retention times is very satisfactory because it is the same with the accuracy of the retention times predicted under isocratic conditions. Finally, the above method for estimating gradient retention times was used in an optimisation algorithm, which determines the best variation pattern of psi that leads to the optimum separation of a mixture of solutes at different values of the total elution time.  相似文献   

14.
Summary Gradient elution of polystyrene standards on reversed phase C18 columns by methanol/tetrahydrofuran or methanol/dichloromethane mixtures yielded a strange effect of the molecular weight of the sample on the specific peak are (mAUs per g sample injected). The effect did not occur when pure dichloromethane was used as an eluent. Further to this, dependence of specific peak area on flow rate was observed in gradient elution with methanol/tetrahydrofuran mixtures. It was found that these effects were due to polymer elution at the verge of precipitation. Depending on the dwell time of the sample in the column, opalescence occurred that added to the UV signal used for monitoring the elution.  相似文献   

15.
Summary Retention times in gradient liquid chromatography of synthetic polymers are often dependent on sample size. They increase with column load if the separation mechanism is governed by a solution process but decrease with increasing load if the mechanism is governed by adsorption. Since retention times independent of sample size are a prerequisite for peak identification as well as for the correct measurement of elution bands of samples with a broad distribution, measures to counteract sample-size effects deserve attention. Usually both solubility and adsorption are effective in gradient liquid chromatography of synthetic polymers. An appropriate balance of both effects is suitable for diminishing the influence of sample size on retention time of synthetic polymers. Ternary gradients allowing independent control of solubility and adsorption are promising.  相似文献   

16.
Summary A rapid and sensitive method for the simultaneous determination of primary amino acids in apple is described. After sample preparation, amino acids were derivatized with o-phthaldialdehyde/2-mercaptoethanol and separated on a reversed phase column with a gradient of phosphate buffer-tetrahydrofuran-methanol as the mobile phase. Detection was carried out with a fluorescence detector at excitation and emission wavelengths of 340 nm and 425 nm respectively. Recovery studies showed good results for all substances (91–109%) (with coefficients of variation ranging, from 0.1 to 9.0%). This method was applied to the monitoring of amino acids during the ripening of apples.  相似文献   

17.
Summary Copolymers from styrene and ethyl methacrylate have been separated according to composition byn-heptane gradients on a C18 bonded phase after injection into acetonitrile and subsequent sudden transition to a concentration of either dichloromethane or tetrahydrofuran between 30 and 50% or 20 and 50%, respectively. Acetonitrile is a polar non-solvent for the copolymers under investigation and ensures proper retention of the samples on a non-polar stationary phase. Dichloromethane and tetrahydrofuran are good solvents of moderate polarity. The addition of, e.g., 30 vol% of one of these solvents increased the dissolution power of the starting eluent but not to the extent necessary for elution. The latter was achieved by the addition ofn-heptane, which is a non-solvent for the polymers investigated. Thus, its eluting power must be understood as the consequence of its modifying effect on the polarity of the eluent mixture. The higher the content of copolymer in ethyl methacrylate the earlier it was eluted. Since acetonitrile andn-heptane are only partly miscible, phase diagrams were measured after the addition of either tetrahydrofuran or dichloromethane as a third component. Homogeneous mixtures were obtained on addition of about 30% solvent (one of both of the latter).Part 3: see Ref. [10]  相似文献   

18.
A procedure is described by which 20 commonly occurring amino acids may be separated by reversed-phase liquid chromatography at room temperature in a total time, including derivatisation with o-phthalaldehyde/2-mercaptoethanol reagent, of approximately 15 minutes. Further, an increase in column temperature enables increased resolution of certain amino acids to be obtained with small but acceptable losses in fluorescence intensity. The only major drawback to the method is that the derivatisation reagent does not react with proline or hydroxyproline.  相似文献   

19.
梯度淋洗离子对色谱法测定咪唑离子液体中的阳离子   总被引:1,自引:0,他引:1  
高微  于泓  马亚杰 《色谱》2010,28(6):556-560
采用梯度淋洗离子对色谱-紫外检测(IPC-UV)法分离测定5种咪唑离子液体中的阳离子。实验采用ZORBAX Eclipse XDB C18色谱柱,以离子对试剂与乙腈为流动相,首先考察了离子对试剂种类和浓度、乙腈浓度和色谱柱温度对咪唑阳离子保留的影响,然后确定了最适宜分离的色谱条件。在此条件下可同时基线分离5种咪唑阳离子。所测阳离子的检出限(S/N=3)为0.05~0.30 mg/L,峰面积的相对标准偏差(RSD, n=5)在0.1%以下。将此方法用于分析实验室合成的2种1-烷基-3-甲基咪唑离子液体中的阳离子,加标回收率在98.6%~102.1%之间。本方法准确、可靠,具有较好的实用性。  相似文献   

20.
Takeuchi  T.  Miwa  T. 《Chromatographia》1994,38(9-10):555-558
Chromatographia - Fluorescence signals of dansyl amino acids were enhanced by on-column detection in microcolumn liquid chromatography with cyclodextrin-bonded silica gel as the stationary phase....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号