首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compares microfluidic technology (Protein 200 LabChip Assay kit, Agilent 2100 Bioanalyzer, referred to here as Protein 200) to the traditional approach for protein analysis, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), for the sizing and quantification of immunoglobulin G (IgG) in hybridoma cell cultures. Internal references differ between each method: purified IgG was used alone in SDS-PAGE while myosin (the upper marker) was added to each sample in Protein 200. The IgG used here were produced in cultures propagated in either a serum-free or a serum-containing medium. With serum-containing samples, there was a significant difference in the IgG concentrations (p < 0.05) between SDS-PAGE and Protein 200. The concentration determined by SDS-PAGE was significantly higher (> 30%) than by Protein 200 or by high-pressure liquid chromatography (HPLC) because the large amounts of serum albumin in the samples affect the accuracy of SDS-PAGE. Protein 200 can determine size similarly to SDS-PAGE in serum-free samples (standard error of the mean, SEM, < 1%, 95% confidence < +/-1%), unlike in serum-containing samples. The Protein 200 assay was more effective than the traditional one-dimensional SDS-PAGE in determining concentration and size of IgG in cell culture samples and it provided a miniaturized and convenient platform for rapid analysis.  相似文献   

2.
A method for separating proteins with a molecular mass difference of 2 kDa using SDS-PAGE under nonreducing conditions is presented. A sample mixture containing several human growth hormone (hGH) isoforms was initially separated on a weak anion-exchange column. Fractions rich in 24 kDa hGH as determined by analytical SDS-PAGE were pooled and further separated by cation-exchange chromatography. The fractions pooled from the cation-exchange chromatography contained two hGH isoforms with a 2 kDa molecular mass difference according to SDS-PAGE analysis, 22 and 24 kDa hGH. The 22 and 24 kDa hGH were separated using continuous-elution preparative double-inverted gradient PAGE (PDG-PAGE) under nonreducing conditions. The preparative electrophoresis gel was composed of three stacked tubular polyacrylamide matrices, a 4% stacking gel, a 13-18% linear gradient gel, and a 15-10% linear inverted gradient gel. Fractions containing purified 24 kDa hGH were pooled and Western blot analysis displayed immunoreactivity to antihGH antibodies. PDG-PAGE provides researchers with an electrophoretic technique to preparatively purify proteins under nonreducing conditions with molecular mass differences of 2 kDa.  相似文献   

3.
The recent introduction of the PhastSystem, an automatic electrophoresis and staining system with precast gradient-gels, allows rapid and reproducible analysis of proteinuria in patients suffering from renal injury. A routine method for sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis (SDS-PAGE) and silver staining of unconcentrated urine specimens in the PhastSystem is described and compared to our conventional "macro"-method with self-cast SDS-polyacrylamide gradient gels. The method described for the PhastSystem using 0.3 microL sample volumes and an 8-25% polyacrylamide gradient gel leads to highly reproducible results within 1.5 h. Before electrophoresis urine specimens were neither concentrated nor dialyzed. Samples with a protein concentration exceeding 5 mg/mL had to be diluted 1:5 (v/v). Analysis and documentation of PhastGels appeared as easy as with our conventional SDS-PAGE. Protein bands could reliably be identified by Western blotting. Urine and serum proteins, separated in PhastGels, were electrophoretically transferred to nitrocellulose and detected with specific antibodies against human albumin, transferrin, alpha-1-antitrypsin and IgG. Comparison of several standard kits for molecular weight determination revealed considerable differences concerning the quality of protein separation patterns. Availability of precast gels and automatization of SDS-PAGE and staining allows easy standardization of urine SDS-PAGE among clinical routine laboratories.  相似文献   

4.
An anomalous electrophoretic behavior of a chitinase isoform present in both grape (Vitis vinifera L.) berries and wine was observed in glycol chitin-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. A progressive shift of the relative molecular mass M(r) of the enzyme (from approximately 30,500 up to approximately 57,700) with increasing glycol chitin concentration in the gels up to 0.1% was revealed when samples were electrophoresed under nonreducing conditions, whereas the presence of glycol chitin had no effects when samples were reduced before SDS-PAGE separation. The M(r) of other grape and wine chitinase isoforms as well as that of the chitinase from pomegranate (Punica granatum L.) fruit was unaffected by the presence of the substrate in the gel under both reducing and nonreducing conditions. Since the enzymes were inactive during the electrophoretic separation, it is likely that the retarding effect of glycol chitin observed specifically for the unreduced chitinase band from grape and wine was due to an interaction between the substrate and a chitin-binding domain different from the catalytic site, such as that typical of class I and class IV chitinases.  相似文献   

5.
A 2-D native-PAGE/SDS-PAGE method for detecting the subunit components of protein oligomers at low picomole sensitivity is presented. IgG was electrophoresed in a native acidic polyacrylamide gel in amounts ranging from 51 pmol to 60 fmol. Silver-staining (native fast silver stain, ammoniacal silver stain, permanganate silver stain), Coomassie-staining (R-250, G-250), metal ion-reverse-staining (zinc, copper), and fluorescent chromophore-staining (SYPRO Ruby) methods were used to visualize the IgG oligomers. The protein zones were then excised, separated by SDS-PAGE, and subunits visualized with a permanganate silver stain. The Coomassie R-250/permanganate silver-staining combination detected IgG subunits using 2 pmol of sample. Coomassie G-250 and native fast silver staining in the first-dimensional gel produced detectable subunits in the second-dimensional separation at 3 and 13 pmol, respectively. Staining with silver (ammoniacal, permanganate), copper, zinc, or SYPRO Ruby in the first-dimensional gel did not produce discernible subunits in the second-dimensional gels due to protein streaking or protein immobilization in the native gel. When using a 2-D native-PAGE/SDS-PAGE system, Coomassie staining of the first-dimensional native gel combined with permanganate silver staining of the second-dimensional denaturing gel provides the most sensitive method (2-3 pmol) for visualizing constituent subunits from their oligomeric assemblies.  相似文献   

6.
C Arruti  S Chifflet 《Electrophoresis》1991,12(7-8):588-591
Polypeptides having different net electric charges and very similar molecular weights, visualized as one single band in sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE), can be readily analyzed by an improved method combining two electrophoretic procedures. The methodology consists of the identification and isolation of selected protein bands from SDS-PAGE, their equilibration in an isoelectric focusing (IEF) sample buffer, and their casting and separation in an IEF flat-bed gel. This method requires no extra equipment, is highly reproducible, is suitable for quantitative and comparative studies, and is especially useful in the case of small samples. As a particular example, we analyze here the subunit composition of alpha-crystallins of young and embryonic quail lenses.  相似文献   

7.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) still remains the most reliable and comprehensive analytical method for the evaluation of protein extracts. However, conventional SDS-PAGE is time-consuming and, thus, unpractical if several tens or hundreds of samples must be examined. We show that SDS-PAGE protein analysis can be automated using slab gel DNA sequencers and compare the instrument's performance with conventional SDS-PAGE in terms of resolution, sensitivity and sample capacity. Labeled protein bands are detected online by laser-induced fluorescence (LIF) and the acquired signals are electronically stored for further processing, avoiding gel staining and scanning. Appropriate software allows immediate display of recorded data and convenient evaluation. The method provides a higher sensitivity and dynamic range than conventional Coomassie-stained gels and the resolution of proteins with different masses is independent of the polyacrylamide concentration. Internal markers can also be used for direct quantification and assignment of the molecular masses. Additionally, we present a novel electrophoresis instrument for the simultaneous separation and online LIF detection of all samples of a microtiterplate in parallel lanes in a 3-D geometry gel cylinder. The specific gel thermostatting concept prevents irregular sample migration (smiling) and improves the reproducibility and comparability of individual separation patterns. In combination with the expected large capacity of 384 or 1,536 samples, this makes the instrument a valuable tool for high-throughput comparative screening applications.  相似文献   

8.
A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual introduction of membrane pieces into the graphite furnace. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a polyvinylidene difluoride (PVDF) membrane by semi-dry electroblotting. After staining the membrane, the protein bands were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well as selenoprotein standard were applied to the membrane. A characteristic mass of 54 +/- 4 pg/0.0044 s was obtained for the selenoprotein standard. Protein transfer from polyacrylamide gel to the membrane was quantitative and no interferences were introduced. The method was used for identification of selenoprotein P after enrichment of the protein from human plasma.  相似文献   

9.
A new method is presented for the separation of secretory immunoglobulin A (SIgA) from salivary samples. Salivary proteins (from parotid or stimulated whole mouth saliva) were precipitated with methanol to concentrate SIgA from salivary samples whilst removing other salivary proteins. SIgA purified from breast milk and salivary proteins was separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions. Following completion of electrophoresis the top strip of gel was removed and the proteins present reduced with dithiothreitol. The gel strip was then applied to the top of a second 10% SDS gel, and the proteins were electrophoresed and then stained by Coomassie Brilliant Blue R-250. Three major protein bands were stained in all samples corresponding in molecular mass to secretory component, alpha-heavy chain and light chains of SIgA. Separated proteins were also electroblotted onto nitrocellulose and stained by fluorescein isothiocyanate (FITC). Lectin analysis was then used to detect the O-glycans present on IgA1. Lectins from Helix aspersa and Arachis hypogaea were used to determine the amount of terminal N-acetyl galactosamine and nonsialylated O-glycans, respectively. Maclura pomifera lectin was used to determine the total amount of IgA1 present on the blots. The results indicate that SlgA in stimulated whole mouth saliva, stimulated parotid saliva and purified from breast milk contain similar O-glycans.  相似文献   

10.
A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual introduction of membrane pieces into the graphite furnace. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a polyvinylidene difluoride (PVDF) membrane by semi-dry electroblotting. After staining the membrane, the protein bands were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2– 10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well as selenoprotein standard were applied to the membrane. A characteristic mass of 54 ± 4 pg/0.0044 s was obtained for the selenoprotein standard. Protein transfer from polyacrylamide gel to the membrane was quantitative and no interferences were introduced. The method was used for identification of selenoprotein P after enrichment of the protein from human plasma. Received: 28 June 1999 / Revised: 14 September 1999 / Accepted: 16 September 1999  相似文献   

11.
Ventzki R  Stegemann J 《Electrophoresis》2003,24(24):4153-4160
We report a novel separation method that is applicable to both DNA and protein samples, based on electrophoresis in a three-dimensional (3-D) geometry. In contrast to conventional electrophoresis, samples are applied in a two-dimensional, planar array to one of the surfaces of a 3-D geometry separation medium. Loading onto a plane results in a very high sample capacity. Sample migration and separation occur along the third spatial dimension, which is perpendicular to the loading plane. The key problem of electrophoresis in a 3-D geometry separation setup is that temperature gradients are caused by Joule's heat, affecting the electrical conductivity and viscosity of the separation medium. A means of achieving straight sample migration under these circumstances is to force heat flow through the separation medium parallel to the axis of sample migration. This can be done by dissipating the heat via the electrode sides of the gel and blocking any other heat transfer. The separation of DNA and proteins by this method has been tested using agarose gel electrophoresis, polyacrylamide gel electrophoresis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Data were acquired off-line by conventional staining methods as well as on-line by detection of laser-induced fluorescence. We describe how to excise samples from the separation medium for preparative purposes. Possible unique applications of this 3-D geometry electrophoresis separation method are also discussed.  相似文献   

12.
Substrate-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) has become a popular procedure for the separation and identification of active fractions present in enzyme mixtures due to its relative simplicity. Procedures including high-molecular-mass substrates within the gel, such as starch for identification of amylase activity, and protein substrates, including gelatin, casein, and collagen, for revealing protease activity, have been described. SDS-PAGE separation under denaturing conditions is dependent on the molecular mass of the proteins and on the effective pore size of the gels, the last factor being affected by the inclusion of high-molecular-mass substrates into the polyacrylamide matrix. In order to quantify the effect of the addition of increasing concentrations of such substrates on protein migration, starch, gelatin, and casein were included in gels in which polyacrylamide concentration was kept constant. High-molecular-mass substrates decreased migration of proteins ranging from 6.5 to 205 kDa, although the migration pattern, and thereby the accuracy of the assignation of relative molecular masses to proteins separated on those gels, was practically unaffected. The substitution of glycine, as the carrying ion, by Tricine in denaturing electrophoresis buffer systems resulted in an improvement of the migration of proteins in substrate-containing gels. Results suggested that zymograms including substrates remain a valuable procedure for the separation and the relative molecular mass assignation of active enzyme fractions.  相似文献   

13.
The complete resolution of the protein components of phycobilisome from cyanobacterium Synechocystis 6803, together with their detection and determination of molecular mass, has successfully been obtained by the combined use of HPLC coupled on-line with electrospray ionization mass spectrometry. The method proposed consists of the isolation of the light-harvesting apparatus of cyanobacterium, by simply breaking cells in low-ionic-strength buffer, and subsequent injection of the total mixture of phycobilisomes into a C4 reversed-phase column. Identification of proteins was performed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the samples collected from HPLC or by measuring the protein molecular mass coupling HPLC with mass spectrometry. The latter method allows the simultaneous separation of the phycobiliproteins, phycocyanin and allophycocyanin, from linker proteins and their identification, which due to their similar amino acid sequence and their similar hydrophobicity, might not be detected by denaturing SDS-PAGE. Under the experimental conditions used, the pigment phycobilin is not removed from the polypeptide backbone, determining the hydrophobicity of the phycoproteins and hence their interaction with the reversed-phase column as well as in determining the protein-protein interaction into the phycobilisome aggregation. Removal of the pigment, in fact, abolishes HPLC separation, emphasizing the essential role that the pigments play in maintaining the unusual tertiary structure of these proteins.  相似文献   

14.
In this work a highly acetylated-ethylenediamine-Novarose (HA-EDA-Novarose) gel was synthesized and used as a new agarose-based salt-promoted adsorption chromatography (SPAC) matrix to effectively isolate serum immunoglobulins without the need of denaturing conditions. Samples of human serum in 0.5 M Na2SO4, 10 mM 3-(N-morpholino)-propane-sulfonic acid (MOPS), pH 7.6 were applied to a chromatographic column packed with the SPAC gel. Immunoglobulins (Igs) with affinity for the HA-EDA ligands were specifically adsorbed to the matrix, non-bound serum proteins were readily removed by washing the column with the same feed solution buffer. Bound Igs were effectively and very gently eluted by simply removing the salt from the feed solution buffer. The elution buffer consisted thus of only 10 mM MOPS, at pH 7.6 and no salt. The salt-dependent adsorption capacity of this system was estimated to be 7.3 mg/ml with protein recovery of about 93%. Sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis analysis, radial immunodiffusion and enzyme-linked immunosorbent assays showed that immunoglobulins G, M and A (IgG, IgM and IgA) were the main components present in the elution fraction. The new SPAC adsorbent was used to purify Igs from human serum and IgG and IgA from non-pure commercially available Igs preparations in a very gentle single step.  相似文献   

15.
In this work a 2D electrophoretic separation procedure able to maintain the integrity of platinum-protein bonds has been developed. The method is based on the use of sequential OFFGEL isoelectric focussing (IEF) and PAGE. A systematic study of the reagents used for PAGE, for OFFGEL-IEF separation, and post-separation treatment of gels (such as enzymatic digestion and sample preparation for MS analysis) was tackled regarding their suitability for the identification of platinum binding proteins using standard proteins incubated with cisplatin. The distribution of platinum in high and low molecular weight fractions (separated by cut-off filters) was determined by ICP-MS, which allows evaluating platinum-protein bond stability under the conditions studied. SDS-PAGE in the absence of β-mercaptoethanol or dithiotreitol preserved the platinum-protein bonds. In addition, neither the influence of the electric field during the electrophoretic separation, nor the processes of fixing, staining and destaining of proteins in the gel did result in the loss of platinum from platinum binding proteins. SDS-PAGE under non-reducing conditions provides separation of platinum-binding proteins in very narrow bands with quantitative recoveries. Different amounts of platinum-bound proteins covering the range 0.3-2.0 μg were separated and mineralised for platinum determination, showing good platinum linearity. Limits of detection for a mixture of five standard proteins incubated with cisplatin were between the range of 2.4 and 13.9 pg of platinum, which were satisfactory for their application to biological samples. Regarding OFFGEL-IEF, a denaturing solution without thiourea and without dithiotreitol is recommended. The suitability of the OFFGEL-IEF for the separation of platinum binding proteins of a kidney cytosol was demonstrated.  相似文献   

16.
Serum proteins associated with acute myocardial infarction (AMI) have been monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and high resolution two-dimensional electrophoresis (2-DE) under nonreducing conditions. Proteins a, b, c (Mr 13,000; pI6.2, 6.7 and 7.5, respectively) and e(Mr27,000; pI5.2) appear simultaneously approximately 30 h after infarction, reach maximum intensity after 48 h and progressively decline thereafter. Protein d (Mr15,000; pI7-8.5; identified as hemoglobin) sometimes appears within 18 h of infarction. Proteins a-c are not detected in the 2-DE patterns of healthy myocardium, infarcted myocardium, pectoral muscle or tongue, but e is present in all and tentatively identified as myosin light chain. Other myocardial proteins which are either reduced in amount following infarction or more specifically associated with myocardium than pectoral muscle are not detected in the serum of AMI patients. Analysis of unconcentrated urine by SDS-PAGE and silver staining does not reveal proteins specific to AMI.  相似文献   

17.
Chang M  Hsu HY  Lee HJ 《Electrophoresis》2005,26(16):3062-3068
Protein molecular weight markers are widely used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Here, we describe novel protein molecular weight markers in which a prestaining procedure is no longer needed. Green fluorescent protein (GFP) is stable and resistant to denaturing agents/conditions. Various histidine-tagged GFP fusion proteins were overexpressed in Escherichia coli and purified by metal affinity chromatography. The minimal amount of each protein marker needed for analysis in SDS-PAGE and Western blot under visible light was 62.5 and 125 ng, respectively. Under ultraviolet (UV) ray, the minimal amount of each protein marker needed for analysis in SDS-PAGE and Western blot was half of those amounts used under visible light, respectively. Collectively, the accuracy, sensitivity, ease, economy, and flexibility of our strategy may reinforce the application of GFP in molecular biology.  相似文献   

18.
Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) is performed to quantify monomeric avidin and biotin on a protein. Under non-reducing SDS-CGE conditions, avidin migrates as monomers exhibiting apparent molecular mass 17,000. In the presence of a biotin-protein conjugate, monomeric avidin binds the conjugate and forms a larger complex that migrates later in the separation. The difference between the remaining monomeric avidin and the initial amount is the portion of monomeric avidin bound to the conjugate. Accordingly, the number of biotin on the protein can be calculated. The assay is linearly responsive to increasing biotin loading in a biotinylation reaction of a protein. Accuracy of the assay is also demonstrated by good sample dilution recovery. Excellent quantitative reproducibility < 2% (relative standard deviation) is obtained for both intra- and inter-day measurements. Main advantages of the method include the use of monomeric avidin that minimizes steric hindrance to capture biotin on a protein and assay automation on a capillary electrophoresis apparatus.  相似文献   

19.
The molecular weights (MW) of seven (glyco)proteins, of which five were plasma-derived, with MWs higher than 200 kDa were determined with three techniques: CGE-on-a-chip, SDS-PAGE and MALDI-TOF-MS. While the analysis of medium to high MW proteins with SDS-PAGE was an already well-established technique, the usefulness of MALDI-TOF-MS for the exact MW determination of high mass proteins was only partly described in literature so far. CGE-on-a-chip is the newest of all three applied techniques and was so far not applicable. Therefore, it was not evaluated for high MW (glyco)proteins. All proteins were analyzed under nonreducing as well as reducing conditions. In this work, it was demonstrated that all three described techniques were capable of determining the MW of all high molecular weight (glyco)proteins. The noncommercial CGE-on-a-chip assay allowed for the first time the electrophoretic separation of proteins in the MW range from 14 to 1000 kDa. MW assignment was limited to 500 kDa in the case of SDS-PAGE and 660 kDa in the case of the high MW CGE-on-a-chip assay. With the proper matrix and sample preparation, analysis with a standard MALDI-TOF-MS provided accurate MWs for all high MW proteins up to 1?MDa.  相似文献   

20.
We have developed novel protein gel electrophoresis techniques, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing (IEF) in short microchannels (approximately millimeters) that take less than a minute. A photopatterning technique was used to cast in situ crosslinked polyacrylamide gel in a microchannel to perform SDS-PAGE. A fluorescent protein marker sample (Mr range of 20,000-200,000) was separated in less than 30 s in less than 2 mm of channel length. Crosslinked polyacrylamide gel, patterned in channels using UV light, provides higher sieving power and sample stacking effect, therefore yielding faster and higher-resolution separation in a chip. IEF of proteins was also achieved in a microchannel, and several proteins were focussed within tens of seconds in mm-length channels. As resolution in IEF is independent of separation distance, focusing in ultra-short channels results in not only faster separation but also more concentrated bands potentially allowing detection of low-concentration species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号