首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low-NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the linear-eddy model with a one-dimensional counterflow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results obtained demonstrate that the effects of the resolved strain rate are not dominant for the considered premixed flame configuration and the unstrained turbulent flame speed model is found to perform as well as the one that allows for the strain rate effects.  相似文献   

2.
Self-sustained jet flapping is observed in a confined, premixed and preheated methane-air turbulent flame, generated in a single-nozzle jet-stabilized gas turbine model combustor designed based on the FLOX ? concept. The flapping frequency and its complex motion within the confinement of the combustor are characterized in detail using proper orthogonal decomposition (POD) of the flow fields measured by particle imaging velocimetry (PIV). The influence of jet flapping on combustion stability is examined using simultaneous PIV/OH chemiluminescence imaging and PIV/planar laser-induced fluorescence of OH radicals (OH PLIF) at 5 kHz repetition rate. By influencing the size and location of the recirculation zones, jet flapping modifies the flame shape and flame lift-off height. It also controls the amount of hot gas entrainment into the recirculation zones. In extreme cases, jet flapping is found to cause temporary local extinction of the flame, due to jet impingement on the combustor wall and partial blockage of burned gas entrainment. The flame is only able to recover after the jet detaches from the wall and reopens the back flow channel. The results suggest that jet flapping could play a key role in the stabilization mechanisms in similar jet-stabilized combustors.  相似文献   

3.
Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor   总被引:3,自引:0,他引:3  
Ignition in an aircraft gas turbine combustion chamber is simulated using Large Eddy Simulation (LES) in conjunction with the filtered probability density function (pdf) equation approach, which is solved using the Eulerian stochastic field method. The LES-pdf methodology is used for both dispersed (liquid) and gas phases. The liquid phase is described using a Lagrangian formulation whilst an Eulerian approach is employed for the gas phase. The spark energy deposition was mimicked by a distributed energy source term added to the enthalpy equation. Unsuccessful and successful ignition sequences have been simulated and the results suggest that spark ‘size’ is an important parameter in the ignition of kerosene fuelled combustion chambers.  相似文献   

4.
The present experimental study focuses on the effects of the degree of premixing and swirl strength on combustion instabilities occurring in a lean premixed gas turbine combustor burning natural gas and air. The combustor operated at pressurized conditions with heated air. Major measurements for the investigation of premixed combustion dynamics include pressure fluctuations, flame emissions in reacting flow, and acetone fluorescence in non-reacting flow to assess the degree of premixing between fuel and air. The acetone PLIF results revealed that the degree of premixing improves as mixing time increases. The first and second longitudinal acoustic modes were the dominant excited modes for most cases of interest. Combustion at a lean premixed condition becomes more susceptible to instabilities as the degree of premixing becomes poor, and self-excited pressure oscillations are obviously present under a fully premixed condition, even without equivalence ratio fluctuations in space. For incomplete premixing cases, local equivalence ratio fluctuations caused by poor premixing may initiate instabilities since reaction rate is sensitive to equivalence ratio fluctuations at lean conditions. Phase resolved chemiluminescence measurements show that pressure oscillations are strongly coupled with variations in flame structures.  相似文献   

5.
In the context of combustion noise and combustion instabilities, the transport of entropy perturbations through highly simplified turbulent flows has received much recent attention. This work performs the first systematic study into the transport of entropy perturbations through a realistic gas turbine combustor flow-field, exhibiting large-scale hydrodynamic flow features in the form of swirl, separation, recirculation zones and vortex cores, these being ubiquitous in real combustor flows. The reacting flow-field is simulated using low Mach number large eddy simulations, with simulations validated by comparison to available experimental data. A generic artificial entropy source, impulsive in time and spatially localized at the flame-front location, is injected. The conservation equation describing entropy transport is simulated, superimposed on the underlying flow-field simulation. It is found that the transport of entropy perturbations is dominated by advection, with both thermal diffusion and viscous production being negligible. It is furthermore found that both the mean flow-field and the large-scale unsteady flow features contribute significantly to advective dispersion — neither can be neglected. The time-variation of entropy perturbation amplitude at combustor exit is well-modelled by a Gaussian profile, whose dispersion exceeds that corresponding to a fully-developed pipe mean flow profile roughly by a factor of three. Finally, despite the attenuation in entropy perturbation amplitude caused by advective dispersion, sufficient entropy perturbation strength is likely to remain at combustor exit for entropy noise to make a meaningful contribution at low frequencies.  相似文献   

6.
LES computations of jets in cross flow (JICF) were performed. Experimental investigations reported in literature are reproduced with good agreement concerning the momentum field and the mixing of a passive scalar. The results validate the ability of the present LES approach to compute fuel injection of the type JICF. LES computations of fuel injection in an industrial gas turbine burner are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
This paper describes the first steps in the development of a large eddy simulation (LES) code able to compute combustion instabilities in gas turbines. This code was used to compute the forcing of an experimentally investigated premixed dump combustor. It is shown that the main effect of acoustic waves entering the combustion chamber is to create large vortices and unsteady heat release when these vortices burn. Another effect of waves entering the combustor is to modulate the fuel and air flow rates produced by the feeding lines. In this case the equivalence ratio of the mixture entering the combustor may also vary. This was investigated in a “chemical effect” simulation where the inlet equivalence ratio fluctuates but the total flow rate remains constant. For perturbations from stoichiometric burning, this mechanism was shown to induce less destabilizing effects than the purely aerodynamical mechanism due to vortex formation and combustion. It is shown that the LES methodology developed is able to reproduce the experimentally observed phase shift between acoustic excitation and total reaction rate in the chamber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Fuel efficiency improvement and harmful emission reduction are the paramount driving forces for development of gas turbine combustors. Lean-burn combustors can accomplish these goals, but require specific flow topologies to overcome their sensitivity to combustion instabilities. Large Eddy Simulations (LES) can accurately capture these complex and intrinsically unsteady flow fields, but estimating the appropriate numerical resolution and subgrid model(s) still remain challenges. This paper discusses the prediction of non-reacting flow fields in the DLR gas turbine model combustor using LES. Several important features of modern gas turbine combustors are present in this model combustor: multiple air swirlers and recirculation zones for flame stabilisation. Good overall agreement is obtained between LES outcomes and experimental results, both in terms of time-averaged and temporal RMS values. Findings of this study include a strong dependence of the opening angle of the swirling jet inside the combustion chamber on the subgrid viscosity, which acts mainly through the air mass flow split between the two swirlers in the DLR model combustor. This paper illustrates the ability of LES to obtain accurate flow field predictions in complex gas turbine combustors making use of open-source software and computational resources available to industry.  相似文献   

9.
To investigate the mechanisms leading to sustained thermoacoustic oscillations in swirl flames, a gas turbine model combustor was equipped with an optically accessible combustion chamber allowing the application of various laser techniques. The flame investigated was a swirled CH4/air diffusion flame (thermal power 10 kW, global equivalence ratio φ = 0.75) at atmospheric pressure which exhibited self-excited thermoacoustic oscillations at a frequency of 290 Hz. In separate experiments, the flow velocities were measured by laser Doppler velocimetry, the flame structures and heat release rates by planar laser-induced fluorescence of CH and by OH chemiluminescence, and the joint probability density functions of the major species concentrations, mixture fraction, and temperature by laser Raman scattering. All measurements were performed in a phase-locked mode, i.e., triggered with respect to the oscillating pressure level measured by a microphone. The results revealed large periodic variations of all measured quantities and showed that the heat release rate was correlated with the degree of mixing of hot products with unburned fuel/air mixtures before ignition. The thermal expansion of the reacting gases had, in turn, a strong influence on the flow field and induced a periodic motion of the inner and outer recirculation zones. The combination of all results yielded a deeper understanding of the events sustaining the oscillations in the flame under investigation. The results also represent a data base that can be used for the validation and improvement of CFD codes.  相似文献   

10.
While the basic capability of large eddy simulation (LES) has been amply demonstrated on a number of relatively simple academic configurations, there is still a lack of works applying LES to practical systems also performing detailed quantitative comparisons based on experimental data. In this paper, we tend to approach the simulation of real gas turbine combustor step by step as we first present results of the isothermal LES of a generic gas turbine combustor rig. The available detailed measurements are used to thoroughly validate the LES results. Beyond a pure validation, the LES is used to analyze the influence of the precessing vortex core present in the studied configuration on the mixing of fuel and oxidizer, and possible implications for reacting conditions are discussed.  相似文献   

11.
The phenomenon of periodic combustion instabilities has been investigated in a gas turbine model combustor by application of two-line planar laser induced fluorescence (PLIF) of OH for the determination of temperature distributions. The measurement technique has been evaluated using laser Raman scattering for comparison. The results showed that even with a lower accuracy compared to single-point techniques like CARS or Raman, valuable information concerning the stabilization mechanism can be drawn from the phase-locked mean temperature. The fact that the 2D technique is less time consuming compared to single-point techniques makes it attractive for phase-resolved measurements. The investigation showed that the two-line OH-PLIF thermometry technique can very well contribute to the understanding of combustion instabilities phenomena and assist the validation and the improvement of CFD models.  相似文献   

12.
In order to evaluate the direct and indirect contributions to the total combustion noise emission, a combustion chamber consisting of a swirl burner and an exit nozzle of Laval-shape, representing a gas turbine combustor, is investigated by means of experiments and large eddy simulation. Focused on the isothermal flow case first and encouraged by a good overall agreement between the LES and the experimental data for the flow field, a first characterisation of the flow with respect to noise sources is performed. To analyse acoustic properties of the flow, time and length scales are evaluated inside the combustor. Furthermore, the evidence for the existence of a precessing vortex core (PVC), typical for configurations with swirl, is revealed. Finally, the effect of the PVC on the flow inside the Laval nozzle is discussed.  相似文献   

13.
The present study is devoted to the analysis of the behaviour of the flow through an effusion-cooled aeronautical combustor model. High-fidelity calculations are performed on an experimental model of a combustion chamber multi-perforated wall and compared to experimental measurements. The effect of combustion instability on the effusion-cooling system is investigated by studying the interaction of an acoustic wave with the jets-in-crossflow issued from the cooling plate. It is shown that the mass-flow rate through the plate can be drastically reduced by the acoustic wave, which demonstrates the destructive effect that such instability may have on the cooling of an aeronautical combustion chamber.  相似文献   

14.
This paper details the experimental techniques and numerical analysis used to investigate the flow field established by a multi-spoke, annular flameholder. The results from this work were used to maximise the Sustained Hypersonic Flight Experiment (SHyFE) ramjet combustion efficiency whilst ensuring that the vehicle wall temperature limits would not be exceeded. Through an overview of flameholder combustion enhancement the reasoning behind the use of pressure loss, three-dimensional air velocity and turbulence intensity profile measurements in conjunction with CFD analysis to optimise the flameholder is explained. The assessment of three flameholder designs within the paper allows a clearer representation of the processing techniques and allows the influence of spoke size and blockage ratio on mixing capability to be presented. The high resolution liquid crystal thermography technique used to investigate the influence of flameholder design on the SHyFE wall heat loads is also detailed and example results presented.  相似文献   

15.
对短环形流燃烧室内有较强回流的湍流旋流流动进行了模拟,并从两个方面(燃烧室构型和多点喷射)对燃烧室性能的影响进行了分析。计算中采用Reynoldes应力湍流模型(RSM)、EBU-Arrheniue湍流燃烧模型和离散坐标辐射模型描述其燃烧流动,液相采用Lagrange法处理,气相采用SIMPLE法求解。研究表明:在燃料和空气总流量不变的情况下,燃烧室构型对燃烧室出口平均温度影响不大,对出口温度分布、燃烧室内空气流场有比较大的影响。喷嘴数目的改变对出口处的平均温度和平均速度影响不大,但是对出口截面处的温度分布影响比较大,在局部范围可能产生温度比较高的热斑。  相似文献   

16.
This work addresses the prediction of the reacting flow field in a swirl stabilized gas turbine model combustor using large-eddy simulation. The modeling of the combustion chemistry is based on laminar premixed flamelets and the effect of turbulence-chemistry interaction is considered by a presumed shape probability density function. The prediction capabilities of the presented combustion model for perfectly premixed and partially premixed conditions are demonstrated. The effect of partial premixing for the prediction of the reacting flow field is assessed by comparison of a perfectly premixed and partially premixed simulation. Even though significant mixture fraction fluctuations are observed, only small impact of the non-perfect premixing is found on the flow field and flame dynamics. Subsequently, the effect of heat loss to the walls is assessed assuming perfectly premixing. The adiabatic baseline case is compared to heat loss simulations with adiabatic and non-adiabatic chemistry tabulation. The results highlight the importance of considering the effect of heat loss on the chemical kinetics for an accurate prediction of the flow features. Both heat loss simulations significantly improve the temperature prediction, but the non-adiabatic chemistry tabulation is required to accurately capture the chemical composition in the reacting layers.  相似文献   

17.
Numerical simulations are foreseen to provide a tremendous increase in gas-turbine burners efficiency in the near future. Modern developments in numerical schemes, turbulence models and the consistent increase of computing power allow Large Eddy Simulation (LES) to be applied to real cold flow industrial applications. However, the detailed simulation of the gas-turbine combustion process remains still prohibited because of its enormous computational cost. Several numerical models have been developed in order to reduce the costs of flame simulations for engineering applications. In this paper, the Flamelet-Generated Manifold (FGM) chemistry reduction technique is implemented and progressively extended for the inclusion of all the combustion features that are typically observed in stationary gas-turbine combustion. These consist of stratification effects, heat loss and turbulence. Three control variables are included for the chemistry representation: the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the stratification effect is expressed by the mixture fraction. The interaction between chemistry and turbulence is considered through a presumed beta-shaped probability density function (PDF) approach, which is considered for progress variable and mixture fraction, finally attaining a 5-D manifold. The application of FGM in combination with heat loss, fuel stratification and turbulence has never been studied in literature. To this aim, a highly turbulent and swirling flame in a gas turbine combustor is computed by means of the present 5-D FGM implementation coupled to an LES turbulence model, and the results are compared with experimental data. In general, the model gives a rather good agreement with experimental data. It is shown that the inclusion of heat loss strongly enhances the temperature predictions in the whole burner and leads to greatly improved NO predictions. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. The implemented combustion model retains most of the physical accuracy of a detailed simulation while drastically reducing its computational time, paving the way for new developments of alternative fuel usage in a cleaner and more efficient combustion.  相似文献   

18.
Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors.  相似文献   

19.
20.
带内环槽的螺旋槽干式气体端面密封的静压性能   总被引:2,自引:4,他引:2  
针对现场使用的带内环槽的螺旋槽干式气体端面密封,建立了用于预测其端面气膜压力的等温可压缩流二维雷诺方程,在只考虑静压效应的条件下应用有限元法计算了端面开启力、泄漏率、气膜刚度和刚漏比等密封性能参数,并与典型螺旋槽干式气体端面密封(S-DGS)进行了比较.结果表明:与S-DGS相比,前者具有更好的稳定性、润滑性能和开启特性.以获得最大刚漏比为优化原则,综合考虑密封的稳定性、密封性和开启特性,获得了带内环槽S-DGS在静压作用下的端面规则微槽几何参数的优选值,研究结果对有关密封的设计与选用具有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号