首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In [1], by a transformation on the Lienard equation system
  相似文献   

2.
3.
We consider a singular Cauchy problem and prove the existence of continuously differentiable solutions with required asymptotic properties.  相似文献   

4.
This paper develops, with an eye on the numerical applications, an analogue of the classical Euler-Cauchy polygon method (which is used in the solution of the ordinary differential equation dy/dx=f(x, y), y(x 0)=y 0) for the solution of the following characteristic boundary value problem for a hyperbolic partial differential equation u xy =f(x, y, u, u x , y y ), u(x, y 0)=(x), u(x 0, y)=(y), where (x 0)=(y 0). The method presented here, which may be roughly described as a process of bilinear interpolation, has the advantage over previously proposed methods that only the tabulated values of the given functions (x) and (y) are required for its numerical application. Particular attention is devoted to the proof that a certain sequence of approximating functions, constructed in a specified way, actually converges to a solution of the boundary value problem under consideration. Known existence theorems are thus proved by a process which can actually be employed in numerical computation.
  相似文献   

5.
6.
For the problem of bending of a semi-infinite strip x0, –1y1, with the sides y=±1 clamped, we give a proof that the end-data% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaarmWu51MyVXgaiuGacqWFgpGzdaWgaaWcbaGaaeiEaiaabIha% aeqaaGqbaOGae4hiaaIaaiikaiaaicdacaGGSaGae4hiaaIaamyEai% aacMcacqGFGaaicqGH9aqpcqGFGaaicaWGMbGaaiikaiaadMhacaGG% PaGaaiilaaqaaiab-z8aMnaaBaaaleaacaqG5bGaaeyEaaqabaGccq% GFGaaicaGGOaGaaGimaiaacYcacqGFGaaicaWG5bGaaiykaiab+bca% Giabg2da9iab+bcaGiaadAgacaGGOaGaamyEaiaacMcacaGGSaaaaa% a!5D6D!\[\begin{array}{l} \phi _{{\rm{xx}}} (0, y) = f(y), \\ \phi _{{\rm{yy}}} (0, y) = f(y), \\ \end{array}\] where f(y), g(y) are arbitrary independent functions prescribed on (–1,1), may be expanded as a series of the bi-orthogonal Papkovich-Fadle eigenfunctions for the strip. This represents an advance on the standard work of R. T. C. Smith [6], who proved such an expansion, but under conditions which are often not satisfied in practice. In particular we are able to solve this bi-harmonic boundary value problem when f, g do not satisfy the side conditions% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaacaWGMbGaaiikaiabgglaXkaaigdacaGGPaqedmvETj2BSbac% faGae8hiaaIaeyypa0Jae8hiaaIaamOzamaaCaaaleqabaGaai4jaa% aakiab-bcaGiaacIcacqGHXcqScaaIXaGaaiykaiab-bcaGiabg2da% 9iab-bcaGiaaicdacaGGSaaabaGaam4zaiaacIcacqGHXcqScaaIXa% Gaaiykaiab-bcaGiabg2da9iab-bcaGiaadEgadaahaaWcbeqaaiaa% cEcaaaGccqWFGaaicaGGOaGaeyySaeRaaGymaiaacMcacqWFGaaicq% GH9aqpcqWFGaaicaaIWaGaaiilaaaaaa!6222!\[\begin{array}{l} f( \pm 1) = f^' ( \pm 1) = 0, \\ g( \pm 1) = g^' ( \pm 1) = 0, \\ \end{array}\]and when the conditions of consistency% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qmaeaacaWGNbGaaiikaiaadMhacaGGPaqedmvETj2BSbacfaGa% e8hiaaIaamizaiaadMhacqWFGaaicqWF9aqpcqWFGaaidaWdXaqaai% aadMhacaWGNbGaaiikaiaadMhacaGGPaGae8hiaaIaamizaiaadMha% cqWFGaaicqGH9aqpcqWFGaaicaaIWaaaleaacqWFsislcqWFXaqmae% aacqWFXaqma0Gaey4kIipaaSqaaiabgkHiTiaaigdaaeaacaaIXaaa% niabgUIiYdaaaa!5A1B!\[\int_{ - 1}^1 {g(y) dy = \int_{ - 1}^1 {yg(y) dy = 0} } \]are not satisfied.The present completeness proof thus answers questions raised recently (in the mathematically equivalent context of Stokes flow) by Joseph [3], and Joseph and Sturges [5], who showed that if the side conditions (A), (B) are relaxed then the corresponding eigenfunction series may still converge; but they left open the more difficult question of whether these series still converge to the data.The method of proof used here also succeeds in proving a corresponding completeness theorem for the Williams eigenfunctions for the wedge with the data.% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaadaabciqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaa% daqadiqaamaalaaabaGaaGymaaqaaiaadkhaaaqedmvETj2BSbacfi% Gae8NXdygacaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaamOCaiab% g2da9iaaigdaaeqaaGqbaOGae4hiaaIaeyypa0Jae4hiaaIaamOzai% aacIcacqaH4oqCcaGGPaGaaiilaaqaamaaeiGabaWaaSaaaeaacqGH% ciITdaahaaWcbeqaaiaaikdaaaGccqaHgpGzaeaacqGHciITcqaH4o% qCdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaceaadaWcaaqaaiaaigda% aeaacaWGYbaaaiab-z8aMbGaayjkaiaawMcaaaGaayjcSdWaaSbaaS% qaaiaadkhacqGH9aqpcaaIXaaabeaakiab+bcaGiabg2da9iab+bca% GiaadEgacaGGOaGaeqiUdeNaaiykaiaacYcaaaaa!6B9C!\[\begin{array}{l} \left. {\frac{\partial }{{\partial r}}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = f(\theta ), \\ \left. {\frac{{\partial ^2 \phi }}{{\partial \theta ^2 }}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = g(\theta ), \\ \end{array}\]prescribed on –<<, (where 2 is the wedge angle).Department of Mathematics, University of ManchesterOn leave of absence at the University of British Columbia, Vancouver, B.C. Canada, during 1977–79. This work was supported in part by N.R.C. grants Nos. A 9259 and A9117.  相似文献   

7.
In this paper, the global structural stability of the toroidal differential equationshas been obtained, and applied to the cross-coupled phase - locked loop, where Δω≥0  相似文献   

8.
9.
10.
11.
12.
We find necessary and sufficient conditions for the nonlinear difference operator $\left( {\mathcal{D}x} \right)\left( t \right) = x\left( {t + 1} \right) - f\left( {x\left( t \right)} \right)$ $t \in \mathbb{R}$ , where $f:\mathbb{R} \to \mathbb{R}$ is a continuous function, to have the inverse in the space of functions bounded and continuous on $\mathbb{R}$ .  相似文献   

13.
14.
Bäcklund transformations for the equation 2 u/x1x 1+ 2u/x 2 x 2=f (u)here f is an arbitrary function) is studied in this paper, using the procedure of Wahlquist and Estabrook (WEP). We conclude that the condition d 2 f/du 2=f is sufficient for the existence of Bäcklund transformations for the equation of our interest. A special case of our results leads to the conclusion of Leibbrandt [1,2].  相似文献   

15.
16.
17.
18.
Non-linear elastic wave spectroscopy (NEWS) has been shown to exhibit a high degree of sensitivity to both distributed and isolated non-linear scatterers in solids. In the case of an isolated non-linear scatterer such as a crack, by combining the elastic energy localization of time reversal (TR) with NEWS, it is shown that one can isolate non-linear scatterers in solids. The experiments reviewed here present two distinct methods of combining TR and NEWS for this purpose. The techniques each have there own advantages and disadvantages, with respect to each other and other non-linear methods, which are discussed.  相似文献   

19.
The three Barnett-Lothe tensors S, H, L and the three associated tensors S(), H(), L() appear frequently in the real form solutions to two-dimensional anisotropic elasticity problems. Explicit expressions of the components of these tensors are derived and presented for monoclinic materials whose plane of material symmetry is at x 3=0. We use the algebraic formalism for these tensors but the results are derived not by the straight-forward substitution of the complex matrices A and B into the formulae. Instead, we find the product –AB -1, whose real and imaginary parts are SL -1 and L -1, respectively. The tensors S, H, L are then determined from SL -1 and L -1. For S(), H(), L() we again avoid the direct substitution by employing an alternate approach. The new approaches require minimal algebra and, at the same time, provide simple and concise expressions for the components of these tensors. Although the new approaches can be extended, in principle, to monoclinic materials whose plane of symmetry is not at x 3=0 and to materials of general anisotropy, the explicit expressions for these materials are too complicated. More studies are needed for these materials.  相似文献   

20.
STABILITYOFNAVIER-STOKESEQUATION(II)ShiWei-hui(施惟慧);FangXiao-zuo(方晓佐)(ShanghaiUniversity),Shanghai(ReceivedDec.11,1993;Commun...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号