首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that ultrathin multilayered films fabricated from plasmid DNA and synthetic polyamines undergo nanometer-scale transformations that resemble spinodal decomposition when incubated in aqueous media. The patterns and structures generated by this transformation are similar to those observed for the spinodal dewetting of thin films of conventional polymers. This behavior has not, however, been observed for this class of multilayered assemblies, for which long-range electrostatic interactions play significant roles in governing film structure and stability. We demonstrate that it is possible to promote this behavior, prevent it, or control it by varying polymer structure, film composition, or the conditions to which these materials are exposed. These results suggest the basis of methods that could prove useful for the generation of nanostructure on complex surfaces and contribute to methods for the localized delivery of DNA from surfaces.  相似文献   

2.
We have investigated and characterized changes in film morphology and surface structure that occur when ultrathin multilayered polyelectrolyte films fabricated from linear poly(ethylene imine) (LPEI), sodium poly(styrene sulfonate) (SPS), and two hydrolytically degradable polyamines (polymers 1 and 2) are incubated in physiologically relevant environments. Characterization of the physical erosion profiles of films having the structure (LPEI/SPS)10(1/SPS)4(2/SPS)4 (approximately 80 nm thick) by atomic force microscopy (AFM), reflective optical microscopy, and scanning electron microscopy (SEM) demonstrated that these materials undergo large-scale changes in surface structure and morphology upon incubation in phosphate-buffered saline (PBS) at 37 degrees C. The patterns and structures generated during this transformation (e.g., nucleation and growth of holes, coalescence of holes, formation of cell-type structures, and the subsequent breakup of these features into droplets) are similar in many ways to those observed for the dewetting of thin films of conventional polymers, such as polystyrene, on nonwetting surfaces. The processes reported here are sufficiently slow (they occur over approximately 100 h) and occur under sufficiently mild conditions (e.g., incubation in PBS at 37 degrees C) to permit characterization and quantification of the structures and features that arise during the course of these transformations. The apparent dewetting of these ultrathin films upon exposure to aqueous environments creates future opportunities to investigate and characterize processes of mass transport in this class of ionically cross-linked assemblies.  相似文献   

3.
Tensile properties of microcoupons of polyelectrolyte complex, formed by the multilayering method, were determined using a micromechanical analysis system. The degree of internal ion-pair ("electrostatic") cross-linking was reversibly controlled by exposure to salt solution of varying concentration, which "doped" counterions into the films, breaking polymer/polymer ion pairs in the process. Linear stress-strain behavior was observed for a poly(styrene sulfonate)/poly(diallyldimethylammonium) multilayer up to 2% deformation. The dependence of modulus on cross-link density could be rationalized well by classical theories of rubber elasticity, including some insight on the topology of polyelectrolyte complexes.  相似文献   

4.
In this paper the results of studies carried out on thin films of new poly[bis(carbazol-9-ylmethyl)diacetylene]s (PCDAs) are reported. The preparation of the films has required clever synthesis to make processable the conjugated polymers without degrading their optoelectronic properties. To this end, the parent poly(diacetylene), (polyDCHD), has been modified by introducing long alkyl or acyl chains in the 3 and 6 positions of the carbazole rings. Electronic absorption spectra and linear and nonlinear optical characterization of three types of PCDAs are reported and compared.  相似文献   

5.
Inhomogeneous molecular diffusion in layered structures of thin liquid films deposited on solid surfaces is observed via wide field single molecule microscopy. The fluorescence dyes Rhodamine 6G and Oregon Green 514 are used to probe the diffusion in tetrakis(2-ethylhexoxy)-silane and polydimethylsiloxane. A broad distribution of diffusion constants is observed which can be attributed to diffusion within distinct layers of the liquid. Comparison with computer simulations shows that diffusion is normal but depends strongly on the distance of the molecules from the solid surface. Diffusion within layers is faster than between the layers and additional temperature activation is necessary to speed up interlayer diffusion.  相似文献   

6.
Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.  相似文献   

7.
Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.  相似文献   

8.
Two novel types of photomagnetic hybrid ultrathin film (film A and B) of metal cyanides have been fabricated by means of the modified Langmuir–Blodgett method using a smectite clay mineral. Film A is composed of an amphiphilic azobenzene cation, a montmorillonite, and Prussian Blue in which photocontrol in the magnetization was realized by the photoisomerization of azobenzene chromophore. The observed photomagnetic efficiency was large (ca. 11%) due to the well-organized structure of the ultrathin film. Film B is composed of a quaternary ammonium salt, a montmorillonite, and Co–Fe Prussian Blue in which the photoinduced magnetization caused by the electron transfer exhibited an anisotropic response with regards to the direction of the applied magnetic field. This phenomenon is ascribed to the unique structure of Co–Fe Prussian Blue formed onto the clay layer. Contribution to special issue “Magnetic field effects in Electrochemistry”  相似文献   

9.
Photopatterned nanoporosity in polyelectrolyte multilayer films   总被引:1,自引:0,他引:1  
We report on spatial control of nanoporosity in polyelectrolyte multilayer (PEM) films using photopatterning and its effects on film optical and adsorption properties. Multilayers assembled from poly(acrylic acid-ran-vinylbenzyl acrylate) (PAArVBA), a photo-cross-linking polymer, and poly(allylamine hydrochloric acid) (PAH) were patterned using ultraviolet light followed by immersion in low pH and then neutral pH solutions to induce nanoporosity in unexposed regions. Model charged small molecules rhodamine B, fluorescein, and propidium iodide and the model protein albumin exhibit increased adsorption to nanoporous regions of patterned PEM films as shown by fluorescence microscopy and radiolabeling experiments. Films assembled with alternating stacks of PAH/poly(sodium-4-styrene sulfonate) (SPS), which do not become nanoporous, and stacks of PAH/PAArVBA were patterned to create nanoporous capillary channels. Interdigitated channels demonstrated simultaneous, separate wicking of dimethyl sulfoxide-solvated fluorescein and rhodamine B. In addition, these heterostack structures exhibited patternable Bragg reflectivity of greater than 25% due to refractive index differences between the nanoporous and nonporous stacks. Finally, the PEM assembly process coupled with photo-cross-linking was used to create films with two separate stacked reflective patterns with a doubling in reflectivity where patterns overlapped. The combined adsorptive and reflective properties of these films hold promise for applications in diagnostic arrays and therapeutics delivery.  相似文献   

10.
The nanobubble inflation method is the only experimental technique that can measure the viscoelastic creep compliance of unsupported ultrathin films of polymers over the glass–rubber transition zone as well as the dependence of the glass transition temperature (Tg) on film thickness. Sizeable reduction of Tg was observed in polystyrene (PS) and bisphenol A polycarbonate by the shift of the creep compliance to shorter times. The dependence of Tg on film thickness is consistent with the published data of free‐standing PS ultrathin films. However, accompanying the shift of the compliance to shorter times, a decrease in the rubbery plateau compliance is observed. The decrease becomes more dramatic in thinner films and at lower temperatures. This anomalous viscoelastic behavior was also observed in poly(vinyl acetate) and poly (n‐butyl methacrylate), but with large variation in the change of either the Tg or the plateau compliance. By now, well established in bulk polymers is the presence of three different viscoelastic mechanisms in the glass–rubber transition zone, namely, the Rouse modes, the sub‐Rouse modes, and the segmental α‐relaxation. Based on the thermorheological complexity of the three mechanisms, the viscoelastic anomaly observed in ultrathin polymer films and its dependence on chemical structure are explained in the framework of the Coupling Model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

11.
pH-Sensitive bipolar ion-permselective films of polyelectrolyte multilayers were prepared by layer-by-layer (LbL) assembly and photo-cross-linking of benzophenone-modified poly(acrylic acid) (PAA-BP) and poly(allylamine hydrochloride) (PAH-BP). The multilayer structure and ionizable group composition was finely tuned by changing the pH of the dipping solution. This structure and composition was in turn "preserved" by photo-cross-linking, forming highly stable membrane films. Since PAA-BP and PAH-BP are weak polyelectrolytes, it is possible to control the number of unbound, un-ionized -COOH or -NH2 groups in the multilayer by changing the pH. Moreover, the pH of the deposited film also plays an important role in determining selective latter permselectivity. For example, PAA-BP/PAH-BP multilayers deposited from two pH conditions, pH = 3 (PAA-BP) and pH = 6 (PAH-BP), showed pH-switchable permselectivity for both cationic (pH = 10) and anionic (pH = 3) probe molecules in a single film. The system offers advantages in film stability and introducing reversible selective ion permeability over previous multilayer film and cross-linking methods.  相似文献   

12.
This investigation aimed to clarify the issue of whether polymer chains are entangled in ultrathin films spin-coated onto substrates. This was done using a fluorescence probe method to observe the behavior of two types of poly(methyl methacrylate) (PMMA), one having a carbazolyl (Cz) moiety (PMMA-Cz) and the other having an anthryl (At) moiety (PMMA-At). In both cases, the moiety fraction was 1 unit for 400 units of polymer. We prepared ultrathin films (thickness: 4-88 nm) on quartz substrates from PMMA-Cz, PMMA-At, and a mixture of the two using a spin-coating method. When the PMMA films prepared from the mixture of the two PMMAs were excited at 292 nm, which is preferentially absorbed by Cz rather than At, the Cz fluorescence was found to be quenched dramatically while the At fluorescence increased significantly. This effect is due to the proximity of the Cz to the At, which permits the transfer of excitation energy between them. The average distance between Cz and At can be calculated using the F?rster mechanism. When the ultrathin film thickness was between 12 and 88 nm, the average distance was found to be 2 nm. This is much shorter than the radii of gyration of the polymers. From this it is clear that two polymer molecules in an ultrathin film do experience entanglement, as has been hypothesized. Thus, we conclude that the difference between certain properties of ultrathin films and the properties of the same materials in bulk are not induced by a decrease in the level of polymer chain entanglement.  相似文献   

13.
14.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

15.
The crystalline structures of “microlayer” and “nanolayer” polyethylene have been examined in coextruded films comprised of alternating layers of high-density polyethylene and polystyrene. Transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and wide-angle x-ray scattering (WAXS) reveal that microlayer polyethylene, where the layer thickness is on the order of several microns, crystallizes with the normal unoriented lamellar morphology. In nanolayer films, where the film thickness of tens of nanometers is on the size scale of molecular dimensions, lamellae are oriented with the long axes perpendicular to the extrusion direction in a row-nucleated morphology similar to structures described in the literature. The lamellae are partially twisted about the long axes. The preferred twist angles of ±40° orient the lamellar surfaces normal to the layer surface. The row-nucleated morphology imparts highly anisotropic mechanical properties to the nanolayer polyethylene.  相似文献   

16.
We report hole growth experiments in free-standing polystyrene (PS) films at temperatures up to 10 degrees C below the bulk glass transition. The data show an unexpected result: the growth rate of nucleated holes increases with increasing molecular weight, up to a limiting value beyond which the rate is approximately constant. Film thicknesses of 45, 80, and 100 nm were studied, using PS molecular weights ranging from 65K to 11.4 Mg/mol. Hole diameters grew linearly with time, and no growing rims were observed to form around the developing holes. Possible explanations in terms of elasticity, yield, and influence of sample preparation and confinement effects are discussed.  相似文献   

17.
The effect of the immobilization of 2,6-dichlorophenolindophenol (DCIP) on a polymethacrylate matrix on its redox and acid-base properties was studied. The ionization constant and formal redox potentials of the immobilized DCIP were determined by solid-phase spectrophotometry. It was shown that the acidity constant and the formal potentials of DCIP decreased upon the immobilization in the polymethacrylate matrix. The results of studying the interaction of ascorbic acid with immobilized DCIP are presented.  相似文献   

18.
The electronic properties of conjugated polyelectrolytes (CPEs) with poly(fluorene-co-phenylene) backbones and different counterions and charges have been investigated using absorption and ultraviolet photoelectron spectroscopy (UPS). The optical energy band gap of CPEs depends mainly on their conjugated backbone and are nearly insensitive to the charges or counterions. UPS measurements reveal that electron injection from Au to polymers with cationic groups is more efficient than for the neutral and anionic counterparts. The vacuum levels of CPEs were also shifted toward higher or lower binding energy, relative to that of Au, depending on the charge and counterion presence, and provide insight into the general alignment of dipoles at the metal/organic interface.  相似文献   

19.
The photoelectrochemical behaviour of ionic conducting ultrathin multilayers formed by sequential deposition of poly-L-lysine and poly-L-glutamic acid on modified gold electrodes is investigated upon sensitisation by zinc mesotetrakis(p-sulfonatophenyl)porphyrin.  相似文献   

20.
The phase separation of ultrathin polymer blend films of deuterated poly(styrene)/poly(vinylmethylether) leads to a variety of film morphologies, depending on polymer composition. Phase-separation measurements are made at a constant temperature difference from the critical temperature, leading to a bicontinuous spinodal decomposition pattern for near-critical blend compositions and to “mounds” and “holes” for PVME-rich and dPS-rich off-critical mixtures, respectively. Reverse temperature jumps of the phase-separated blend films into the one-phase region result in dissolution of the undulating surface patterns, confirming the phase-separation origin of the film patterns. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 191–200, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号