首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The inter-nal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient con-tact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previ-ously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the pro-posed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.  相似文献   

2.
本文系统地研究了基于一致旋转场列式的绝对节点坐标(ANCF consistent rotation-based formulation,ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元,新单元在ANC...  相似文献   

3.
The Absolute Nodal Coordinate Formulation (ANCF) has been initiated in 1996 by Shabana (Computational Continuum Mechanics, 3rd edn., Cambridge: Cambridge University Press, 2008). It introduces large displacements of planar and spatial finite elements relative to the global reference frame without using any local frame. A sub-family of beam, plate and cable finite elements with large deformations are proposed and employed the 3D theory of continuum mechanics. In the ANCF, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This investigation concerns a way to generate new finite element in the ANCF for laminated composite plates. This formulation utilizes the assumption that the bonds between the laminae are thin and shear is non-deformable. Consequently, the Equivalent Single Layer, ESL model, is implemented. In the ESL models, the laminate is assumed to deform as a single layer, assuming a smooth variation of the displacement field across the thickness. In this paper, the coupled electromechanical effect of Piezoelectric Laminated Plate is imposed within the ANCF thin plate element, in such a way as to achieve the continuity of the gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Convergence and accuracy of the finite-element ANCF Piezoelectric Laminated Plate is demonstrated in geometrically nonlinear static and dynamic test problems, as well as in linear analysis of natural frequencies. The computer implementation and several numerical examples are presented in order to demonstrate the use of the formulation developed in this paper. A comparison with the commercial finite element package COMSOL MULTIPHYSICS () is carried out with an excellent agreement.  相似文献   

4.
In this paper we discuss the non-linear contact problem between the stator and the rotor of an ultrasonic travelling were motor. For a first simplified mathematical model the problem is formulated for a linear motor in which the stator is modelled as a Bernoulli-Euler beam and the slider (rotor) is assumed to be rigid. A thin layer of visco-elastic material is assumed to exist between stator and slider. Expressions are obtained for the contact pressure between the two parts. The frictional forces both in the sticking and in the sliding zone can then be easily obtained assuming Coulomb friction.  相似文献   

5.
The element created in this investigation is based on the it absolute nodal coordinate formulation (ANCF) which has been successfully used in flexible multibody system dynamic and integration of computer aid design and analysis (ICADA). When modeling a B-spline curve with ANCF beam element, it is the common manner to convert this curve into a series of Bézier curves because the systematical conversion between ANCF beam element and a Bézier curve has already been built. In order to avoid the constrain equation produced in this method and to express a B-spline curve using only one element, an alternative approach is developed, leading to the piecewise ANCF (PANCF) beam element. It is demonstrated that when two ANCF beam elements are connected according to a particular continuity, they can constitute a PANCF element. Besides, a new PANCF element will be produced when an ANCF element is connected to an existing PANCF element. The continuity condition can be automatically ensured by the selection of nodal coordinates and the calculation of the piecewise continuous shape functions. The algorithm for converting a B-spline curve to a PANCF beam element is then given. There also are discussions on the features of PANCF element. When two neighboring segments of PANCF element have the same assumed length, the position vector at the interface cannot be expressed by the other coordinates so the position vector is preserved in the \(C^{2}\) continuous situation. Two examples are given to conclude the interpolation and continuity properties of the shape function and to demonstrate the feasibility of this PANCF in the ICADA.  相似文献   

6.
将叠合梁划分为接触区和分离区,接触区界面间的摩擦作用会对叠合梁的滑移、刚度和自振频率产生影响.本文给出了单伸臂叠合梁在均布荷载和集中力作用下,考虑叠合界面摩擦作用的滑移应变和滑移分布的表达式;推导了考虑叠合界面间摩擦力及摩擦力产生的抵抗弯矩共同作用下的截面刚度.假设梁按等波长和等刚度两种形式自由振动,运用传递矩阵法推导...  相似文献   

7.
Many papers have studied computer-aided simulations of elastic bodies undergoing large deflections and large deformations. But there have not been many attempts to check the validity of the numerical formulations used in these studies. The main aim of this paper is to demonstrate the validity of one such numerical formulation, the absolute nodal coordinate formulation (ANCF), by comparing the results it generates with the results of real experiments. Large oscillations of a thin cantilever beam are studied in this paper to numerically model the beam, which also accounts for the effects of an attached end-point weight and damping forces. The experiments were carried out using a high-speed camera and a data acquisition system.  相似文献   

8.
The absolute nodal coordinate formulation (ANCF) is characterized by being developed specifically for dynamic analysis of large deformation problems. The objective of the study is to investigate how the shape of the initial mesh configuration influences the obtained numerical solution. After a thorough review of three available formulations, they are used in three different convergence studies. Initially a reference study is conducted to determine how the ANCF performs in an uniform and rectangular mesh. Subsequently, the ANCF methods sensitivity to irregular mesh is investigated and finally, the ability of the ANCF method to describe curved structures is evaluated. This study concludes that thin ANCF shell elements are sensitive to both the initial shape and their loading condition. Furthermore, both the initial configuration and the loading condition affect how the ANCF-based models converge. It is suggested that models containing thin ANCF shell elements are subjected to extensive validation studies, before they are used in a design process.  相似文献   

9.
A new approach to model and analyze flexible spatial multibody systems with clearance of cylindrical joints is presented in this work. The flexible parts are modeled by using absolute nodal coordinate formulation (ANCF)-based elements, while the rigid parts are described by employing the natural coordinate formulation (NCF), which can lead to a constant system mass matrix for the derived system equations of motion. In a simple way, a cylindrical joint with clearance is composed of two main elements, that is, a journal inside a bearing. Additionally, a lubricant fluid can exist between these two mechanical elements to reduce the friction and wear and increase the system??s life. For the case in which the joint is modeled as a dry contact pair, a technique using a continuous approach for the evaluation of the contact force is applied, where the energy dissipation in the form of hysteresis damping is considered. Furthermore, the frictional forces developed in those contacts are evaluated by using a modified Coulomb??s friction law. For the lubricated case, the hydrodynamic theory for dynamically loaded journal bearings is used to compute the forces generated by lubrication actions. The lubricated model is based on the Reynolds equation developed for the case of journal bearings with length-to-diameter ratios up to 1. Using this approach, the misalignment of the journal inside the bearing can be studied. Finally, two demonstrative examples of application are used to provide results that support the discussion and show the validity of the proposed methodologies.  相似文献   

10.
Recent years have witnessed the application of topology optimization to flexible multibody systems (FMBS) so as to enhance their dynamic performances. In this study, an explicit topology optimization approach is proposed for an FMBS with variable-length bodies via the moving morphable components (MMC). Using the arbitrary Lagrangian–Eulerian (ALE) formulation, the thin plate elements of the absolute nodal coordinate formulation (ANCF) are used to describe the platelike bodies with variable length. For the thin plate element of ALE–ANCF, the elastic force and additional inertial force, as well as their Jacobians, are analytically deduced. In order to account for the variable design domain, the sets of equivalent static loads are reanalyzed by introducing the actual and virtual design domains so as to transform the topology optimization problem of dynamic response into a static one. Finally, the novel MMC-based topology optimization method is employed to solve the corresponding static topology optimization problem by explicitly evolving the shapes and orientations of a set of structural components. The effect of the minimum feature size on the optimization of an FMBS is studied. Three numerical examples are presented to validate the accuracy of the thin plate element of ALE–ANCF and the efficiency of the proposed topology optimization approach, respectively.  相似文献   

11.
The main objective of the paper is to investigate the dynamic response of the prestressed beams on rigid supports to moving concentrated loads. The governing equation of the transverse vibration of a prestressed continuous beam under the ununiformly distributed load is analytically formulated, taking into account the effect of the prestressing. The forced transverse vibration of the beam under the action of a large number of moving bodies has been investigated by using the method of substructures. In addition, the reaction forces at every rigid supports can be determined from the obtained differential equations. A comparison between the numerical results for the prestressed and the non-prestressed beam is presented to show the influence of the prestressing and the moving velocity of the bodies on the dynamic response of the beam. The calculating results are also examined and validated by experimental measurements at a large ferroconcrete bridge in Vietnam.  相似文献   

12.
The absolute nodal coordinate formulation (ANCF) has been used in the analysis of large deformation of flexible multibody systems that encompass belt drive, rotor blade, and cable applications. As demonstrated in the literature, the ANCF finite elements are ideal for isogeometric analysis. The purpose of this investigation is to establish a relationship between the B-splines, which are widely used in the geometric modeling, and the ANCF finite elements in order to construct continuum models of large-deformation geometries. This paper proposes a simplified approach to map the B-spline surfaces into ANCF thin plate elements. Matrix representation of the mapping process is established and examined through numerical examples successfully. The matrix representation of the mapping process is used because of its suitability of computer coding and to minimize the calculation time. The error estimation is carried out by analyzing the gap between the points of each ANCF element and the corresponding points of the portion of the B-spline surface. The Hausdorff distance is used to study the effect of the number of control points, the degree of interpolation, and the knot multiplicity on the mapped geometry. It is found that cubic interpolation is recommended for optimizing the accuracy of mapping the B-spline surface to ANCF thin plate elements. It is found that thin plate element in ANCF missing a number of basis functions which considered a source of error between the two surfaces, as well as it does not allow to converting the ANCF thin plate elements model to B-spline surface. In this investigation, an application example of modeling large-size wind turbine blade with uniform structure is illustrated. The use of the continuum plate elements in modeling flexible blades is more efficient because of the relative scale between the plate thickness and its length and width and the high flexibility of its structure. The numerical results are compared with the results of ANSYS code with a good agreement. The dynamic simulation for mapped surface model shows a numerical convergence, which ensures the ability of using the proposed approach for applications of dynamics for design and computer-aided design.  相似文献   

13.
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation (ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore, dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results, while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.  相似文献   

14.
The static and dynamic indentation of structural elements such as beams and plates continue to be intriguing problems, especially for scenarios where large area contacts are expected to occur. Standard methods of indentation analyses use a beam theory solution to obtain an overall load–displacement relationship and then a Hertzian contact solution to calculate local stresses under the indenter. However, these techniques are only applicable in a fairly limited class of problems: the stress distribution in the contact region will differ significantly from a Hertzian one when the contact length exceeds the thickness of the beam. The indentation models developed herein are improvements over existing GLOBAL/LOCAL models for static and dynamic indentation of cantilever beams. Maximum contact stresses, beam displacements, and contact force time histories are obtained and compared with the predictions of current static and dynamic indentation models. The validity of the solutions presented herein is further assessed by comparing the results obtained to the predictions of modified beam theory solutions.  相似文献   

15.
Based on previous studies, a new spatial curved slender-beam finite element and a new cylindrical shell finite element are proposed in the frame of gradient-deficient Absolute Nodal Coordinate Formulation (ANCF). The strain energy of the beam element is derived by using the definition of the Green?CLagrange strain tensor in continuum mechanics so that the assumption on small strain can be relaxed. By using the differential geometry and the continuum mechanics, the angle between two base vectors of a defined local coordinate frame of the cylindrical shell element is introduced into the strain energy formulations. Therefore, the new shell element can be used to model parallelogram shells. The analytical formulations of elastic forces and their Jacobian for the above two finite elements of gradient-deficient ANCF are also derived via the skills of tensor analysis. The generalized-alpha method is used to solve the huge set of system equations. Finally, four case studies including both static and dynamic problems are given to validate the proposed beam and cylindrical shell elements of gradient-deficient ANCF.  相似文献   

16.
This study thoroughly examines various higher-order three and four-node beam elements for use in the absolute nodal coordinate formulation (ANCF). The paper carefully investigates which potential benefits and drawbacks the utilization of higher-order ANCF beam elements without in-slope vectors has in the case of the usage of full three-dimensional elasticity. When the elastic forces for shear-deformable ANCF beam elements are calculated using full three-dimensional elasticity—especially in the form of the St. Venant–Kirchhoff material law—Poisson locking severely deteriorates the accuracy of the numeric results. As shown in this paper, an existing approach to preventing this locking phenomenon for three-node beam elements can still produce unsatisfying results in load cases involving bidirectional bending. The results of this study show that enriching the polynomial basis used to approximate the beam kinematics provides a natural solution to this issue. As will be seen, these findings for three-node elements can also be extended to four-node elements. When using a sufficient approximation order in transverse directions, satisfying accuracy can be achieved both in conventional one-dimensional bending and in the above-mentioned bidirectional load case.  相似文献   

17.
For a finite beam with a nonzero gap distance, an asymmetric concentrated load can be either inside or outside of the contact zone. A new governing equation is given for the case of a concentrated load outside the contact zone. By numerically solving the left-side and right-side contact lengths of the beam, a criterion is established to determine whether the concentrated load is inside or outside the contact zone. A more general approach on the tensionless contact of a beam is thus presented.  相似文献   

18.
Modeling of clearance joints plays an important role in the analysis and design of multibody mechanical systems. Based on the absolute nodal coordinate formulation (ANCF), a new computational methodology for modeling and analysis of planar flexible multibody systems with clearance and lubricated revolute joints is presented. A planar absolute nodal coordinate formulation based on the locking-free shear deformable beam element is implemented to discretize the flexible bodies. A continuous contact-impact model is used to evaluate the contact force, in which energy dissipation in the form of hysteresis damping is considered. A force transition model from hydrodynamic lubrication forces to dry contact forces is introduced to ensure continuity in the joint reaction force. A comprehensive study with different lubrication force models has also been carried out. The generalized-α method is used to solve the equations of motion and several efficient methods are incorporated in the proposed model. Finally, the methodology is validated by two numerical examples.  相似文献   

19.
???????????????????????????о?   总被引:1,自引:0,他引:1  
唐斌 《力学与实践》2009,31(4):32-36
针对连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵,分析了在使用连续梁单元 进行结构动态特性分析中的数值问题. 基于连续梁单元的运动方程,导出了连续 Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵. 分析了影响动态刚度矩阵中双曲函 数自变量的各个独立变量及其产生的影响,并给出了初估连续梁单元合理长度的方法. 使用 单一连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵分别进行了悬臂梁频响曲线 的数值求解. 研究表明,在合理选择连续梁单元的长度时,大多数工程结构的动态特性分析 中都不会产生数值问题.  相似文献   

20.
This paper presents a coupled discrete/continuous method for computing lattices and its application to a masonry-like structure. This method was proposed and validated in the case of a one dimensional (1D) railway track example presented in Hammoud et al. (2010). We study here a 2D model which consists of a regular lattice of square rigid grains interacting by their elastic interfaces in order to prove the feasibility and the robustness of our coupled method and highlight its advantages. Two models have been developed, a discrete one and a continuous one. In the discrete model, the grains which form the lattice are considered as rigid bodies connected by elastic interfaces (elastic thin joints). In other words, the lattice is seen as a “skeleton” in which the interactions between the rigid grains are represented by forces and moments which depend on their relative displacements and rotations. The continuous model is based on the homogenization of the discrete model (Cecchi and Sab, 2009). Considering the case of singularities within the lattice (a crack for example), we develop a coupled model which uses the discrete model in singular zones (zones where the discrete model cannot be homogenized), and the continuous model elsewhere. A new criterion of coupling is developed and applied at the interface between the discrete and the continuum zones. It verifies the convergence of the coupled solution to the discrete one and limits the size of the discrete zone. A good agreement between the full discrete model and the coupled one is obtained. By using the coupled model, an important reduction in the number of degrees of freedom and in the computation time compared to that needed for the discrete approach, is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号