首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poly(2-chloroaniline) was prepared by in situ chemical oxidative polymerization method using ammonium thiosulphate as an oxidant and methanesulfonic acid as a dopant. The optical absorption spectra showed bands for π-π* transition of the benzenoid ring at 265 nm and at 350 nm for n-π* transition of the quinonoid ring. The broad band appeared around 550 nm was due to transition of electrons from the valance band to the conduction band, this also confirmed the good electrical conductivity of the polymer. The X-ray diffraction pattern showed characteristic diffraction peak at 2θ = 26° confirming a emeraldine salt form of the poly(2-chloroaniline). The electrical conductivity of the polymer measured by the two probe method at room temperature was 2.21×10?3 S/cm, which was found to be thermally activated. The linear increase in conductivity with increase in the temperature suggested the electron hopping mechanism. The methanesulfonic acid doped poly(2-chloroaniline) presents a linear dependency of its electrical resistance with an increase in ammonia gas concentration (1 ppm to 300 ppm) and creates a promising sensing material for ammonia gas sensing applications.  相似文献   

2.
《中国化学快报》2020,31(8):2029-2032
In this paper, the Pt/SnO2 nanostructures were prepared via a facile one-step microwave assisted hydrothermal route. The structure of the introduced Pt/SnO2 and its gas-sensing properties toward CO were investigated. The results from the TEM test reveal that Pt grows on the SnO2 nanostructure, which was not found for bulk in this situ method, constructing Pt/SnO2. The results indicated that the sensor using 3.0 wt% Pt/SnO2 to 100 ppm carbon monoxide performed a superior sensing properties compared to 1.5 wt% and 4.5 wt% Pt/SnO2 at 225 °C. The response time of 3.0 wt% sensor is 16 s to 100 ppm CO at 225 °C. Such enhanced gas sensing performances could be attributed to the chemical and electrical factors. In view of chemical factors, the presence of Pt facilitates the surface reaction, which will improve the gas sensing properties. With respect to the electrical factors, the Pt/SnO2 plays roles in increasing the sensor’s response due to its characteristic configuration. In addition, the one-step in situ microwave assisted process provides a promising and versatile choice for the preparation of gas sensing materials.  相似文献   

3.
The electrical, optical and humidity sensor properties of nanostructured ZnO samples were investigated. The structural properties of Sn doped ZnO samples were characterized by X-ray diffraction and atomic force microscopy. It was found that the all samples have a hexagonal crystal structure. The electrical conductivity of the samples indicates that undoped and Sn doped ZnO samples exhibit the semiconducting behavior. The optical absorption method was used to determine the optical band gaps of the samples. The optical band gap and activation energy values of the ZnO samples were changed with Sn doping. The ZnO based on quartz crystal microbalance humidity sensors were prepared and sensing properties of the sensors were changed with Sn doping. The response time required to reach 70 % is about 13–16 s, while the recovery time from 70 to 30 % RH is about 13–15 s. The fast response of the sensors is due to easy diffusion of water molecules between ZnO nanopowders. The prepared sensors have a high reproducibility and sensitivity for humidity sensing applications.  相似文献   

4.
The nanostructure and porosity of activated carbon fibers (ACFs) prepared by physical activation with CO2 and by chemical activation with H3PO4 of the highly ordered polymer poly(m-phenylene isophthalamide) have been investigated and compared by means of scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and gas adsorption measurements. In general terms, both types of activation led to porous carbons with similar nanometer-scale structure, which consisted of relatively ordered and homogeneous arrays of platelets below 10-nm wide, the porous structure being mainly comprised by the network of narrow trenches present between neighboring platelets. This similarity was attributed to the influence of the crystalline structure of the polymeric precursor, which should favor a homogeneous, uniform transformation of the polymer into the final carbon material. Such influence was only lost in chemical activation with the use of very large amounts of activating agent. A comparison of samples before and after physical activation allowed a direct identification of the local areas where gasification (activation) took place. For chemical activation, the STM measurements suggested that porosity was developed at a lower temperature than the highly cross-linked nanographitic structure of the final ACF. This result was discussed in terms of the thermal transformation mechanism of the precursor polymer into a carbonaceous solid in the presence of H3PO4.  相似文献   

5.
《Analytical letters》2012,45(9):1454-1465
A novel electrochemical sensor for formaldehyde determination was fabricated by using the Pd-graphene nanohybrides. Pd-graphene nanohybrids were prepared via a concise chemical reduction method. Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used for the characterization of structure and morphology of the nanohybrids. The result showed that Pd nanoparticles were uniformly dispersed and were well-separated on the graphene sheets. The Pd-graphene nanohybrids were dissolved in Nafion and modified on the glassy carbon electrode to fabricate the electrochemical sensor. This proposed electrochemical sensor performed excellent electrocatalytic activity toward formaldehyde oxidation in alkaline medium. The peak current was linearly related to the formaldehyde concentration in the range of 7.75 µM to 62.0 µM with the detection limit of 3.15 µM. The highly sensitive and robust graphene based Pd nanohybrids sensor offers a promising and practical tool for formaldehyde sensing and chemical analysis.  相似文献   

6.
The efficient utilization of natural biomass as renewable raw materials is of importance. We herein prepared porous carbon fibers (PCFs) by activation of the extracted cellulose microfibers from the agriculture byproduct of corn straw. Different from the porous carbons (PCs) by directly activating straw, the obtained PCFs had typical one-dimensional morphology with high surface area (2013 m2 g?1) and large pore volume (1.27 cm3 g?1). The influence of the ZnCl2/cellulose mass ratio on the electrochemical performance was studied, and the optimized PCF(1:1) possessed a much higher specific capacitance than the PC(1:1) sample, which was attributed to the improved specific surface area as well as the fiber-like morphology where it had short ion diffusion route and small interfacial resistance in comparison to PCs. PCFs have a high specific capacitance of 230 F g?1 at 0.5 A g?1, and 183 F g?1 was retained at 20 A g?1 (79.6%), revealing an excellent rate capability. The assembled symmetrical supercapacitor exhibited a wide potential window of 1.8 V, small electrochemical impedance, and superior cycle performance. Moreover, a high energy density of 16.0 Wh kg?1 was obtained at a power density of 450.4 W kg?1, which was preserved of 6.9 Wh kg?1 at a high power density of 14,194.3 W kg?1.  相似文献   

7.
Silver nanofluids have been prepared by single-step chemical reduction method starting with silver nitrate metal precursor. Electrical conductivity of nanofluids has been investigated, as it has largely been overlooked despite immense technological importance. Extremely low yield nanofluid (0.013 wt%) is found to give high electrical conductivity attributed to smaller size monodisperse nanoparticles obtained (16.3 nm). Increased precursor concentration has lead to high yield and high electrical conductivity. Larger particle sizes obtained are optimized by reducing the yield at high concentration, as well as by dilution. The stability is exceptionally higher than the reported results for copper nanofluids.  相似文献   

8.
Three carbon aerogels (AGC) were prepared using the sol–gel method from the polymerization of mixtures of resorcinol–catechol (RC), resorcinol-m-cresol, and resorcinol–phloroglucinol (RP). Cobalt acetate was used as polymerization catalyst. The porous texture and the morphology of carbon aerogels were characterized by nitrogen adsorption at 77 K, carbon dioxide at 273 K and scanning electron microscopy. Their structure and chemical surface were analyzed by means of X-ray diffraction and X-ray photoelectron spectroscopy. It was found that the addition of a second phenol influences the porosity of the material. The carbon aerogel prepared with m-cresol as a monomer presented constrictions at the entrance of the micropores and lower pore volume compared to that of RC and RP. This fact is possibly due to the presence of the methyl group. Moreover, this monomer favors the formation of carbon fibers.  相似文献   

9.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

10.
Pyrolytic carbon films (PCFs) were prepared by chemical vapor deposition (CVD) at different deposition temperatures. As an example of using PCF electrode in electroanalysis, the direct electrooxidation of ascorbic acid (AA) at the PCF electrode was investigated and compared with common carbon‐based electrodes such as glassy carbon (GC), edge plane pyrolytic graphite (EPPG), and basal plane pyrolytic graphite (BPPG) electrodes. It was found that the PCF electrodes prepared under deposition temperatures higher than 1050 °C showed a higher sensitivity and lower overpotential compared to the other carbon electrodes. The electrode was successfully applied for determination of AA in real samples.  相似文献   

11.
The more sensitive and rapid ammonia gas sensors were prepared with nanocomposites of polypyrrole (PPy) and graphitic materials such as graphite, graphite oxide (GO), and reduced graphene oxide (RGO). Pyrrole was polymerized uniformly on the surface of graphitic materials by in situ polymerization method. The structures of nanocomposites were studied by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy indicating the well-exfoliated GO and RGO in PPy matrix with favorable interfacial interaction. PPy/RGO nanocomposite showed the highly improved response in detecting ammonia gas mainly due to the effective electron charge transfer between PPy and ammonia and the efficient transfer of electrical resistance variation by the uniformly dispersed conductive RGO in PPy. PPy/RGO nanocomposite gas sensor also showed the excellent reproducibility in ammonia sensing behavior during the recovery process at lower temperature of 373 K.  相似文献   

12.
Xiong  Wei  Liu  Huanhuan  Liu  Shantang 《Mikrochimica acta》2015,182(13):2345-2352

We describe uniform and high-temperature-stable mesoporous TiO2 beads functionalized with gold nanoparticles (AuNPs-TiO2) for use in conductometric sensing of gases and organic vapors. The size of the interconnected main mesopores of the TiO2 beads ranges from 8 to 15 nm, and the AuNPs have diameters between 8 and 10 nm. The mesoporous TiO2 beads are formed during calcination while the structure-directing template agent is removed. Monodispersed AuNPs are formed by reduction in-situ and are placed inside the mesoporous TiO2 framework. This prevents aggregation of the AuNPs even at 500 °C. The materials were characterized by UV–vis spectroscopy, scanning and transmission electron microscopy, nitrogen adsorption-desorption, and X-ray diffraction. Comb-type gold electrodes were then fabricated on an alumina substrate and are shown to display excellent properties in terms of sensing ammonia, ethanol, methanol or acetone. The sensitivity (defined as the ratio of resistivities under vapor and air) of a typical AuNPs(0.5 %)-TiO2 gas sensor for ethanol reached up to 5.65 at above 600 ppm at 75 °C. Response time and recovery times (t90 ≤ 20 s) are faster than (or comparable to) other metal-doped TiO2 sensors, and working temperatures are much lower. An interesting observation was made in that the changes in the conductivity of the sensor change with temperature. The sensor prepared with AuNPs(0.5 %)-TiO2 is of the p-type (in its response to ammonia gas) at 45 °C, but becomes n-type at 20 °C. Obviously, rather slight changes in temperature lead to a complete change in the direction of the conductometric signal change. This may provide a new aspect in terms of selective and highly sensitive detection of ammonia at ambient and slightly elevated temperatures.

We describe uniform and high-temperature-stable mesoporous TiO2 beads functionalized with gold nanoparticles (AuNPs-TiO2) for use in conductometric sensing of gases and organic vapors. Interestingly, the changes in the conductivity of typical sensors were opposite with the increasing of temperature.

  相似文献   

13.
An ultrasensitive platform is presented for the determination of hydrazine by combining the high specific surface area and higher electrical conductivity of poly(sodium styrenesulfonate) (PSS) graphene nanocomposite film with amperometric detection. The PSS-graphene were synthesized by the Hummers method and used to modify a glassy carbon electrode. The material was characterized by scanning electron microscopy and is found to be suitable for sensing hydrazine. The overpotential of hydrazine on the modified electrode is 0.31 V which is lower than in many electrochemical sensors. The calibration curve for hydrazine is linear in the range from 3.0 to 300 µmol L?1, and the detection limit is as low as 1 µmol L?1. This is the first report in which such a high sensitivity and low limit of detection has been achieved. It is concluded that PSS graphene represents an efficient electron mediator for sensing hydrazine.  相似文献   

14.
Electrical properties of multi-walled carbon nanotubes (MWNTs)/hybrid-glass nanocomposites prepared by the fast-sol–gel reaction were investigated in light of percolation theory. A good correlation was found between the experimental results and the theory. We obtained a percolation threshold ? c  = 0.22 wt%, and a critical exponent of t = 1.73. These values are reported for the first time for a silica-based system. The highest conductivity measured on the MWNT/hybrid-glass nanocomposites was σ ≈ 10?3(Ω cm)?1 for 2 wt% carbon nanotube (CNT) loading. The electrical conductivity was at least 12 orders of magnitude higher than that of pure silica. Electrostatic force microscopy and conductive-mode atomic force microscopy studies demonstrated conductivity at the micro-level, which was attributed to the CNT dispersed in the matrix. It appears that the dispersion in our MWNT/hybrid-glass system yields a particularly low percolation threshold compared with that of a MWNT/silica-glass system. Materials with electrical conductivities described in this work can be exploited for anti-static coating.  相似文献   

15.
Carboxyl-rich hydrothermal carbon spheres were prepared by simply heating pristine hydrothermal carbon spheres (HCSs) at lower temperature in air, and the textural properties were characterized using Boehm titrations, scanning electron microscopy, Fourier transform infrared spectrometer (FT-IR) and elemental-analysis. The result of Boehm titrations indicated that the content of carboxyl groups on HCSs increased significantly from 0.53 to 3.81 mmol/g after heat-treatment at 300 °C, which was also confirmed by FT-IR and EA qualitatively. The ability of heat-treated HCSs has been explored for the removal and recovery of uranium from aqueous solutions, and the influences of different experimental parameters, such as heat-treatment temperature, contact time and ionic strength, on adsorption were investigated. The U(VI) sorption capacity of HCSs increased from 55.0 to 179.95 mg/g after heat-treatment at 300 °C for 5 h. Selective adsorption studies showed that the heat-treated HCSs could selectively remove U(VI), and the selectivity coefficients were improved after heat-treatment in the presence of co-existing ions, Na(I), Ni(II), Sr(II), Mn(II), Mg(II) and Zn(II). The adsorbent HCSs could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.0 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 5.0 g heat-treated HCSs. In addition, a reaction mechanism for newly generating carboxyl groups on pristine HCSs surface during heat-treatment process and uranyl ion interaction with carboxyl-rich hydrothermal carbon spheres were also supposed.  相似文献   

16.
A nanofibrous polyaniline (PANI) thin film was fabricated using plasma‐induced polymerization method and explored its application in the fabrication of NO2 gas sensor. The effects of substrate position, pressure, and the number of plasma pulses on the PANI film growth rate were monitored and an optimum condition for the PANI thin film preparation was established. The resulting PANI film was characterized with UV–visible spectrophotometer, FTIR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The PANI thin film possessed nanofibers with a diameter ranging from 15 to 20 nm. The NO2 gas sensing behavior was studied by measuring the change in electrical conductivity of PANI film with respect to NO2 gas concentration and exposure time. The optimized sensor exhibited a sensitivity factor of 206 with a response time of 23 sec. The NO2 gas sensor using nanofibrous PANI thin film as sensing probe showed a linear current response to the NO2 gas concentration in the range of 10–100 ppm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The supported Ni-YSZ (50 wt.% Ni?+?50 wt.% Zr0.84Y0.16O1.92) anodes were produced of powders, obtained by the ceramic method, combustion synthesis, deposition of nickel oxide onto the YSZ ceramics, and deposition of 28 wt.% of nickel oxide onto the 39 wt.% NiO?+?61 wt.% YSZ powders. The influence of the NiO-YSZ powder production technique, the amount of pore former and sintering temperature on the porosity, gas permeability, thermal expansion, and anode conductivity were studied. The porosity of anodes made of powders obtained by the ceramic method is always lower than the porosity of the anodes made of powders produced by combustion synthesis under otherwise equal conditions. The anode electrical conductivity greatly depends on the powder production techniques, while the anode thermal expansion is only slightly influenced by them.  相似文献   

18.
In this study, erbia (Er2O3)-doped Bi2O3 ceramics were prepared from sol–gel derived nanocrystalline powders. The morphological properties were investigated by scanning electron microscopy. X-ray diffraction (XRD) analysis was carried out in order to characterize the phase and crystal structure of the powder samples. Temperature dependent electrical properties were determined by thermogravimetry/differential thermal analyzer (TG/DTA) and 4-point probe techniques. The stable fluorite face centered cubic δ-type phase was observed at room temperature from the XRD result, which was supported by the DTA and temperature dependent electrical conductivity measurements. Electrical conductivity results indicate that there is a transition approximately at 650 °C, which can be attributed to an order–disorder transition (ODT). The activation energy values obtained from the Arrhenius approach for heating and cooling process were presented. Two regimes, corresponding to high temperature region (HTR) and low temperature region (LTR), were observed. As a result of morphological changes during the ODT, the electrical conductivity modifies and the activation energies are different for studied sample at HTR and LTR.  相似文献   

19.
Cellulose (CE) composite films with high tensile strength, modulus, remarkable elongation as well as excellent electrical conductivity were successfully prepared by dispersing poly(butylene succinate) (PBS) and multiwalled carbon nanotubes (MWCNTs) in CE matrix via the help of ionic liquid 1-allyl-3-methylimidazolium chloride. Fourier transform infrared spectroscopy and differential scanning calorimetry results verified that a physical interaction junction existed between PBS and CE. Scanning electron micrograph (SEM) showed that the low content PBS was uniformly dispersed in CE matrix, leading to a tough and ductile fractured surface. The elongation at break of CE composite film with 1 wt% PBS was increased to 25.9 %, which showed an increase of 325 % compared to that of neat CE film (6.07 %). But high-content PBS acted as the structural defect in the CE matrix. MWCNTs were further added to improve the mechanical and conductive properties of the composite film. The tensile strength and Young’s modulus of MWCNT/CE-PBS composite film with 4 wt% MWCNTs were respectively increased by 33.6 and 140 % compared to CE-PBS film. The electrical conductivity of MWCNT/CE-PBS film was also improved by 8–9 orders of magnitude from 2.5 × 10?14 to 1.3 × 10?5 S/m.  相似文献   

20.
杨勇  王言  蓝国钧  李健  李瑛 《化学通报》2016,79(10):905-913
氮掺杂多孔炭材料,不仅具有多孔炭材料的较高的比表面积、丰富的孔结构、良好的稳定性及耐高温耐酸碱性等优点,同时氮原子的引入使材料表现出优异的导电性能及电子传输能力,使得炭材料具有了一定的碱性及催化性能,是目前多相催化及材料领域的一个研究热点。本文综述了氮掺杂多孔炭的制备方法及在多相催化中的应用,并指出了该领域未来研发的重点及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号