首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of aqueous/ethanolic solutions of CoCl2.6H2O and nitrilotripropionic acid (H3ntp=N(CH2CH2COOH)3) in the presence of potassium hydroxide affords the hydroxy-bridged tetranuclear cluster [Co4mu3-OH)2(H2O)6(ntp)2].2H2O (1). The Ni(II) analogue [Ni4(mu3-OH)2(H2O)6(ntp)2].2H2O (2) can also be isolated using aqueous solutions and Ni(SO4).7H2O as metal salt. With small changes in reaction conditions the methoxy-bridged analogue, [Ni4(mu3-OMe)2(H2O)6(ntp)2](3), can also be isolated. In these tetramers the M(II) ions are oxygen-bridged and exhibit a defect dicubane-like core with two missing vertices. The magnetic properties have been studied for all three clusters and reveal competing antiferromagnetic and ferromagnetic interactions between the four Co(II) ions in 1 and ferromagnetic coupling between the four Ni(II) ions in 2 and 3. In all three compounds the individual clusters order antiferromagnetically at Neel temperatures below 1 K.  相似文献   

2.
Reactions of cymantrenecarboxylic acid (CO)3MnC5H4COOH (CymCOOH) with Ni(II) and Co(II) pivalates in boiling THF followed by extraction of the products with diethyl ether or benzene and treatment with triphenylphosphine gave the binuclear complexes LM(CymCOO)4ML (M = Ni (I) and Co (II); L = PPh3). Treatment of the benzene extract of the intermediate cobalt cymantrenecarboxylate with 2,6-lutidine (L’) yielded the trinuclear complex L’Co(CymCOO)3Co(CymCOO)3CoL’ (III). Complex I is antiferromagnetic; μeff decreases from 3.7 to 0.9 μB in a temperature range from 300 to 2 K. Structures I-III were identified using X-ray diffraction. The frameworks of complexes I and II are like Chinese lanterns, having four carboxylate bridges and axial ligands L (Ni-P, 2.358(1) Å; Co-P, 2.412(2) Å). The metal atoms are not bonded to each other (Ni…Ni, 2.7583(9) Å; Co…Co, 2808 (2) Å). In complex III, either terminal Co atom is coordinated to one ligand L’ (Co-N, 2.059(2) Å). The Co atoms form a linear chain showing no M-M bonds (Co…Co, 3.346(1) Å), in which either terminal Co atom is linked with the central Co atom by three carboxylate bridges (on average, Cocentr-O, 2.164 Å; COterm-O, 2.094 Å). In one of three carboxylate groups, only one carboxylate O atom serves as a bridge, while the other is bonded to the terminal Co atom only (Coterm-O, 2.094 and 2.389 Å); so this carboxylate group is a bridging and chelating ligand.  相似文献   

3.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

4.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

5.
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}?](ClO?)?·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}? ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the ? = -J?(Gd(III))?(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm?1 for 1, -1.7 cm?1 for 2, and -0.22 cm?1 for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of the magnetic coupling. The complex follows the Curie-Weiss law with θ = -2.07 K (-1.44 cm?1).  相似文献   

6.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

7.
The interaction between Co(II) and Cu(II) ions with a Py(2)N(4)S(2)-coordinating octadentate macrocyclic ligand (L) to afford dinuclear compounds has been investigated. The complexes were characterized by microanalysis, conductivity measurements, IR spectroscopy and liquid secondary ion mass spectrometry. The crystal structure of the compounds [H(4)L](NO(3))(4), [Cu(2)LCl(2)](NO(3))(2) (5), [Cu(2)L(NO(3))(2)](NO(3))(2) (6), and [Cu(2)L(μ-OH)](ClO(4))(3)·H(2)O (7) was also determined by single-crystal X-ray diffraction. The [H(4)L](4+) cation crystal structure presents two different conformations, planar and step, with intermolecular face-to-face π,π-stacking interactions between the pyridinic rings. Complexes 5 and 6 show the metal ions in a slightly distorted square-pyramidal coordination geometry. In the case of complex 7, the crystal structure presents the two metal ions joined by a μ-hydroxo bridge and the Cu(II) centers in a slightly distorted square plane or a tetragonally distorted octahedral geometry, taking into account weak interactions in axial positions. Electron paramagnetic resonance spectroscopy is in accordance with the dinuclear nature of the complexes, with an octahedral environment for the cobalt(II) compounds and square-pyramidal or tetragonally elongated octahedral geometries for the copper(II) compounds. The magnetic behavior is consistent with the existence of antiferromagnetic interactions between the ions for cobalt(II) and copper(II) complexes, while for the Co(II) ones, this behavior could also be explained by spin-orbit coupling.  相似文献   

8.
Synthesis and structural, magnetic and electrochemical characterization of the Ni(hfac) 2(pyDTDA) and the Fe(hfac) 2(pyDTDA) complexes are reported (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-; pyDTDA = 4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl). Unlike the previously reported Mn(II) and Cu(II) complexes, but similar to the Co(II) complex, the Ni(II) and Fe(II) complexes are not dimerized in the solid state, allowing for magnetic coupling between the metal ion and paramagnetic ligand to be readily obtained from solid state magnetic measurements: Ni complex, J/k B = +132(1) K, using H = -2 J{ S Ni. S Rad} and g Ni = 2.04(2) and g Rad = 1.99(2); Fe complex, J/k B = -60.3(3) K, using H = -2 J{ S Fe. S Rad} and g av = 2.11(2). The iron complex is unusually unstable. A thermal decomposition product is isolated wherein the coordinated pyDTDA ligand appears to have been transformed into a coordinated 2-(2'-pyridyl)-4,6-bis(trifluoromethyl)pyrimidine. The iron complex also yields a solution decomposition product in the presence of air that is best described as an oxygen bridged iron(III) tetramer with two hfac ligands on each of three iron atoms and two oxidized pyDTDA ligands chelated on the fourth.  相似文献   

9.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

11.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

12.
Three novel cyanide-bridged heterobimetallic coordination polymers have been synthesized by hydrothermal routes, in superheated water solutions, by using K3[Co(CN)6], NiCl2.6H2O, and alpha-diimine ligands: [Ni(CN)4Co(phen)] (1; phen = 1,10-phenanthroline), [Ni(CN)4Co(2,2'-bipy)] (2; 2,2'-bipy = 2,2'-bipyiridine), and [Ni(CN)4Co(2,2'-bipy)2] (3). The isostructural compounds 1 and 2 contain a two-dimensional network with Co(II) centers octahedrally coordinated by one chelating 2,2'-bipy ligand and four cyanide groups of four distinct [Ni(CN)4]2-, through crystallographically equivalent, bridging units. Compound 3 contains one-dimensional zigzag chains in which the Co(II) ion is coordinated by two chelating 2,2'-bipy ligands and two cyanides from two different [Ni(CN)4]2- units cis to each other. These compounds have been fully characterized by single-crystal or unconventional powder X-ray diffraction analyses and variable-temperature magnetic measurements.  相似文献   

13.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Some physicochemical properties of 2-chloro-4-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono-and dihydrates with a metal ion—ligand mole ratio of 1: 2. All complexes are polycrystalline compounds. Their colours depend on the kind of central ion: pink for Co(II) complex, green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293 K–523 K because it was found that on heating in air above 523 K 2-chloro-4-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step. During dehydration process no transformation of the nitro group to nitrito one took place. Their solubilities in water at 293 K are of the orders of 10−3-10−2 mol dm−3. The magnetic moment values of 2-chloro-4-nitrobenzoates determined in the range of 76 K–303 K change from 3.48μB to 3.82μB for Co(II) complex, from 2.24μB to 2.83μB for Ni(II) 2-chloro-4-nitrobenzoate, and from 0.31μB to 1.41μB for Cu(II) complex. 2-Chloro-4-nitrobenzoates of Co(II) and Ni(II) follow the Curie—Weiss law, but the complex of Cu(II) forms dimer.  相似文献   

15.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

16.
Reactions of 3,4-dimethyl-3',4'-bis(diphenylphosphino)tetrathiafulvalene, o-P2, with [BF(4)](-) salts of Fe(ii), Co(ii), Ni(II), Pd(II), and Pt(II) yield complexes of general formula [M(o-P2)(2)][BF(4)](2). Similar reactions between o-P2 and AgSbF(6) or AgPF(6) produced the salts [Ag(o-P2)(2)][X] where X = [SbF(6)](-) or [PF(6)](-). The resulting compounds were fully characterized by (1)H and (31)P{(1)H} NMR, infrared and electronic absorption spectroscopies, cyclic voltammetry, FAB-MS and single-crystal X-ray diffraction. The paramagnetic Co(II) compound exhibits an S = 3/2 state with large spin-orbit coupling contribution at higher temperatures and an effective S' = 1/2 state below 20 K. Electrochemical studies of the compounds indicate that the two functionalized TTF ligands are not in electronic communication and that they essentially behave as isolated redox centers.  相似文献   

17.
The complexes M(II){N(H)Ar(Pr(i)(6))}(2) (M = Co, 1 or Ni, 2; Ar(Pr(i)(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)), which have rigorously linear, N-M-N = 180°, metal coordination, and M(II){N(H)Ar(Me(6))}(2) (M = Co, 3 or Ni, 4; Ar(Me(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Me(3))(2)), which have bent, N-Co-N = 144.1(4)°, and N-Ni-N = 154.60(14)°, metal coordination, were synthesized and characterized to study the effects of the metal coordination geometries on their magnetic properties. The magnetometry studies show that the linear cobalt(II) species 1 has a very high ambient temperature moment of about 6.2 μ(B) (cf. spin only value = 3.87 μ(B)) whereas the bent cobalt species 3 had a lower μ(B) value of about 4.7 μ(B). In contrast, both the linear and the bent nickel complexes 2 and 4 have magnetic moments near 3.0 μ(B) at ambient temperatures, which is close to the spin only value of 2.83 μ(B). The studies suggest that in the linear cobalt species 1 there is a very strong enhanced spin orbital coupling which leads to magnetic moments that broach the free ion value of 6.63 μ(B) probably as a result of the relatively weak ligand field and its rigorously linear coordination. For the linear nickel species 2, however, the expected strong first order orbital angular momentum contribution does not occur (cf. free ion value 5.6 μ(B)) possibly because of π bonding effects involving the nitrogen p orbitals and the d(xz) and d(yz) orbitals (whose degeneracy is lifted in the C(2h) local symmetry of the Ni{N(H)C(ipso)}(2) array) which quench the orbital angular momentum.  相似文献   

18.
Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV–Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).  相似文献   

19.
The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

20.
Dong Q  Rose MJ  Wong WY  Gray HB 《Inorganic chemistry》2011,50(20):10213-10224
Here we report the syntheses and crystal structures of a series of cobalt(II) and nickel(II) complexes derived from (R)NP2 ligands (where R = OMe(Bz), H(Bz), Br(Bz), Ph) bearing ethylene linkers between a single N and two P donors. The Co(II) complexes generally adopt a tetrahedral configuration of general formula [(NP2)Co(I)(2)], wherein the two phosphorus donors are bound to the metal center but the central N-donor remains unbound. We have found one case of structural isomerism within a single crystal structure. The Co(II) complex derived from (Bz)NP2 displays dual coordination modes: one in the tetrahedral complex [((Bz)NP2)Co(I)(2)]; and the other in a square pyramidal variant, [((Bz)NP2)Co(I)(2)]. In contrast, the Ni(II) complexes adopt a square planar geometry in which the P(Et)N(Et)P donors in the ligand backbone are coordinated to the metal center, resulting in cationic species of formula [((R)NP2)Ni(I)](+) with iodide as counterion. All Ni(II) complexes exhibit sharp (1)H and (31)P spectra in the diamagnetic region. The Co(II) complexes are high-spin (S = 3/2) in the solid state as determined by SQUID measurements from 4 to 300 K. Solution electron paramagnetic resonance (EPR) experiments reveal a high-spin/low-spin Co(II) equilibrium that is dependent on solvent and ligand substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号