首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology-controllable synthesis of various pyrene nanostructures from nanoparticles to short nanorods and nanowires (long nanorods) was achieved by a simple self-assembly method. In this approach, aqueous sodium dodecyl sulfate (SDS) micelles were used as templates to direct the self-assembly of the pyrene molecules into nanorods. It was found that changing the concentration ratio of the pyrene to SDS molecules could be employed to control the aspect ratio (length to diameter) of the pyrene nanostructures from 1 to 50 or higher. Moreover, the dimensional variation was accompanied by changes of their optical properties. With the increase of the aspect ratio, the characteristic fluorescence of the isolated pyrene molecules was suppressed and concurrently replaced by the excimer emission of the pyrene nanostructures. A blue-shift was observed in the excimer emission peaks as the length of the nanorods increased. The growth mechanism and the change in optical properties of these pyrene nanostructures were discussed in detail.  相似文献   

2.
A facile method for the shape-selective synthesis of silica nanostructures using a reversemicroemulsion -mediated template(RMMT) technique is reported.In this method,positive poly-Llysine (PLL) is selected as template due to its configuration diversity.By adjusting pH and concentration, PLL demonstrates various secondary structures containing random coil,α-helix andβ-sheet,which result in the formation of silica nanorods,silica nanospheres and silica nanotubes in the reversemicroemulsion system,respectively.Thus,the shape-selective synthesis of silica nanostructures might be achieved by using PLL as structural template in the reverse-microemulsion system.  相似文献   

3.
We demonstrated in this paper the shape-controlled synthesis of hematite (alpha-Fe(2)O(3)) nanostructures with a gradient in the diameters (from less than 20 nm to larger than 300 nm) and surface areas (from 5.9 to 52.3 m(2)/g) through an improved synthetic strategy by adopting a high concentration of inorganic salts and high temperature in the synthesis systems to influence the final products of hematite nanostructures. The benefits of the present work also stem from the first report on the <20-nm-diameter and porous hematite nanorods, as well as a new facile strategy to the less-than-20-nm nanorods, because the less-than-20-nm diameter size meets the vital size domain for magnetization properties in hematite. Note that the porous and nonporous hematite one-dimensional nanostructures with diameter gradients give us the first opportunity to investigate the Morin temperature evolution of nanorod diameter and porosity. Evidently, the magnetic properties for nanorods exhibit differences compared with those for the spherical particle counterparts. Hematite nanorods are strongly dependent on their diameter size and porosity, where the magnetization is not sensitive to the size evolution from submicron particles to the 60-90 nm nanorods, while the magnetic properties change significantly in the case of <20 nm. In other words, for the magnetic properties of nanorods, in a comparable size range, the porous existence could also influence the magnetic behavior. Moreover, applications in formaldehyde (HCHO) gas sensors and lithium batteries for the hematite nanostructures with the diameter/surface area gradient reveal that the performance of electrochemical and gas-sensor properties strongly depends on the diameter size and Brunauer-Emmett-Teller (BET) surface areas, which is consistent with the crystalline point of view. Thus, this work not only provides the first example of the fabrication of hematite nanostructure sensors for detecting HCHO gas, but also reveals that the surface area or diameter size of hematite nanorods can also influence the lithium intercalation performances. These results give us a guideline for the study of the size-dependent properties for functional materials as well as further applications for magnetic materials, lithium-ion batteries, and gas sensors.  相似文献   

4.
This paper reports the synthesis and characterization of polystyrene nanorods in hemicylindrical hemimicelles of a nonionic polyoxyethylene surfactant, C 12 E 5, on graphite. The surface structure is characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy, and contact angle goniometry. Uniformly aligned polystyrene nanorods are captured by AFM. The nanorod dimensions are studied as a function of the reaction time and styrene monomer concentration. The template synthesis using self-assembled surfactant surface aggregates promises to create functional and stable nanostructures for optoelectronics and surface engineering.  相似文献   

5.
Zn-Al layered double hydroxide(LDH) was used as precursor to produce ZnO nanostructures through dissolution of aluminum hydroxide in caustic soda.The Zn-Al LDH could transform into different nanostructures of ZnO on LDH nanosheets and even pure ZnO nanorods under various NaOH concentration.The formed ZnO nanorods vertically aligned on both LDH sides.UV-vis diverse reflectance spectra show that the obtained ZnO nanorods have a band gap of approximately 3.05 eV.Such ZnO/LDH nanostructures might be used as photocatalyst in the organic pollutant decomposition.  相似文献   

6.
利用Ostwald熟化作用合成空心碳纳米材料   总被引:1,自引:0,他引:1  
以淀粉等易获得的生物质为碳前驱物, 亚铁盐为添加剂, 采用水热法制备了碳材料. 实验发现, 在反应过程中, 首先生成了被无定形碳包裹的铁氧化物纳米棒, 形成碳/铁氧化物的核/壳结构. 在进一步的反应中, 铁氧化物核自发溶解, 最终得到了空心的碳纳米棒. 讨论了铁氧化物自发溶解的原因, 认为空心碳纳米棒的形成是由Ostwald熟化现象造成的. 当以葡萄糖或环糊精为碳前驱物时, 得到的是空心碳球, 这可能与各种碳前驱物不同的表面活性剂作用有关.  相似文献   

7.
采用恒电位方法,选择氯化钾和乙二胺(EDA)为添加剂,在氧化铟锡(ITO)导电玻璃上制备了高度有序的ZnO纳米片阵列,通过二次电沉积得到了ZnO纳米片上生长纳米棒的微纳分级结构.利用化学浴沉积法在ZnO基底上沉积Sb2S3纳米粒子制备出了Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构.利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱、瞬态光电流等对其形貌、结构组成和光电化学性能进行了表征和分析.结果表明, Sb2S3/ZnO纳米片上生长纳米棒分级壳核结构的光电流明显高于Sb2S3/ZnO纳米片壳核结构.在Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构的基础上旋涂一层P3HT薄膜形成P3HT/Sb2S3/ZnO复合结构,以上述复合结构薄膜为光活性层组装成杂化太阳电池,其中, P3HT/Sb2S3/ZnO分级壳核结构杂化太阳电池的能量转换效率最高,达到了0.81%.  相似文献   

8.
Bottom‐up synthesis offers novel routes to obtain nanostructures for nanotechnology applications. Most self‐assembly processes are carried out in three dimensions (i.e. solutions); however, the large majority of nanostructure‐based devices function in two dimensions (i.e. on surfaces). Accordingly, an essential and often cumbersome step in bottom‐up applications involves harvesting and transferring the synthesized nanostructures from the solution onto target surfaces. We demonstrate a simple strategy for the synthesis and chemical transformation of tellurium nanorods, which is carried out directly at the solid–solution interface. The technique involves binding the nanorod precursors onto amine‐functionalized surfaces, followed by in situ crystallization/oxidation. We show that the surface‐anchored tellurium nanorods can be further transformed in situ into Ag2Te, Cu2Te, and SERS‐active Au–Te nanorods. This new approach offers a way to construct functional nanostructures directly on surfaces.  相似文献   

9.
A general precipitation strategy has been developed for the large-scale synthesis of molybdate nanostructures, and a series of molybdate nanostructures such as Fe(2)(MoO(4))(3) nanoparticles, ZnMoO(4) nanoplates, MnMoO(4) nanorods and CoMoO(4) nanowires have been successfully prepared.  相似文献   

10.
Core-crosslinked PB-P2VP block copolymer nanorods are used as templates for the synthesis of Keggin-type heteropolyoxometalate (POM) nanostructures by grafting [SiMo(12)O(40)](4-) Keggin ions on the template.  相似文献   

11.
A simple, easy approach to the synthesis of semiconductor ZnS nanorods and nanoparticles exhibiting versatile morphology-formation ability is reported. Water-insoluble zinc sulfide nanocrystals were synthesized in ternary water-in-oil (w/o) microemulsion systems stabilized by either nonionic or, in contrast, cationic surfactant. Products were visualized by transmission electron microscopy (TEM) and identified by energy-dispersive X-ray spectroscopy (EDAX); electron diffraction (ED) was also performed for individual nanorods. With varying molar ratios of water to surfactant (omega0) in solution, hence changing droplet sizes of water pool of microemulsions consequently, several morphologies with different size spans were encountered in the formation of ZnS, such as nanorods and spherical or ellipsoidal particles. Meanwhile, product morphology was also found to be sensitive to the absolute reactant concentration and concentration ratio of [Zn2+] to [S2-], the incubation time, and the ambient temperature. A schematic mechanism for the formation of ZnS nanocrystals and their morphological diversity is described. It is feasible to extend this method to the synthesis of one-dimensional nanocrystals of other semiconductors, given suitable formulae of microemulsions and other appropriate reaction conditions.  相似文献   

12.
Three‐dimensional (3D) hydroxyapatite (HAP) hierarchical nanostructures, in particular hollow nanostructures, have attracted much attention owing to their potential applications in many biomedical fields. Herein, we report a rapid microwave‐assisted hydrothermal synthesis of a variety of hydroxyapatite hierarchical nanostructures that are constructed by the self‐assembly of nanorods or nanosheets as the building blocks, including HAP nanorod‐assembled hierarchical hollow microspheres (HA‐NRHMs), HAP nanorod‐assembled hierarchical microspheres (HA‐NRMs), and HAP nanosheet‐assembled hierarchical microspheres (HA‐NSMs) by using biocompatible biomolecule pyridoxal‐5′‐phosphate (PLP) as a new organic phosphorus source. The PLP molecules hydrolyze to produce phosphate ions under microwave‐hydrothermal conditions, and the phosphate ions react with calcium ions to form HAP nanorods or nanosheets; then, these nanorods or nanosheets self‐assemble to form 3D HAP hierarchical nanostructures. The preparation method reported herein is time‐saving, with microwave heating times as short as 5 min. The HA‐NRHMs consist of HAP nanorods as the building units, with an average diameter of about 50 nm. The effects of the experimental conditions on the morphology and crystal phase of the products are investigated. The hydrolysis of PLP under microwave‐hydrothermal conditions and the important role of PLP in the formation of 3D HAP hierarchical nanostructures are investigated and a possible formation mechanism is proposed. The products are explored for potential applications in protein adsorption and drug delivery. Our experimental results indicate that the HA‐NRHMs have high drug/protein‐loading capacity and sustained drug‐release behavior. Thus, the as‐prepared HA‐NRHMs are promising for applications in drug delivery and protein adsorption.  相似文献   

13.
We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods.  相似文献   

14.
锰氧化物是一类重要的且具有广泛应用背景的材料, 控制合成不同形貌和组成的锰氧化物纳米结构将有助于拓宽其应用领域. 本文报道了以Mn3O4为前驱体, 通过水热法控制合成MnO2纳米结构的方法. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段对产物进行表征. 在硫酸体系中,当反应温度为80 和180 ℃时, 所得产物分别为γ-MnO2海胆结构和β-MnO2单晶纳米棒. 此外, MnOOH纳米线可以在稀酸溶液中合成. 考察了反应温度、溶液酸度、反应时间对产物结构的影响, 并提出了基于γ-MnO2为中间产物的反应机理. 实验结果表明, 水热体系促进了产物的各向异性生长并最终形成不同形貌和结构的锰氧化物.  相似文献   

15.
We report the shape-controlled synthesis of zinc oxide (ZnO) nanostructures by a poly(vinyl methyl ether) (PVME)-assisted alkaline hydrolysis of zinc acetate at low temperature (20 °C). In this method, ZnO nanostructures of various morphologies including dumbbells, lances and triangles have been successfully prepared via a simple variation of different reaction parameters such as polymer concentration, pH of the reaction mixture and precursor concentration. However, without PVME, ZnO of such structurally uniform morphologies were not formed; rather ZnO of a mixture of defined and undefined morphologies were obtained indicating PVME-assisted the growth of such regular shaped ZnO nanostructures. HRTEM analysis of lance- and triangle-shaped samples as well as SAED patterns of all kinds of samples (dumbbell, lance and triangle) revealed that the ZnO nanostrcutures are single crystalline in nature and might form through oriented growth. XRD analysis also revealed the formation of well crystalline ZnO with a hexagonal structure. FTIR spectroscopy and TGA analysis confirmed the adsorption of PVME on the surface of ZnO nanostructures. Being a solvent adaptable polymer, the adsorbed PVME makes these shaped ZnO nanostructures highly dispersible in both polar and non-polar organic solvents including water. The extent of dispersibility in different solvents was studied by spectroscopic and microscopic techniques. Such solvent adoptability of PVME-coated ZnO nanostructures increases its ease of applications in device fabrication as well as in biological systems.  相似文献   

16.
控制实验合成条件,利用溶胶-凝胶法和化学溶液生长法制备出不同形貌的ZnO纳米结构。采用X射线衍射仪(XRD)、扫描电子显微镜( SEM) 以及透射电子显微镜(TEM)等多种测试手段对ZnO纳米结构的微观形态及晶相进行了分析。结果表明:3种ZnO纳米结构形貌虽不同,但均具有Z nO六方纤锌矿晶相结构。ZnO纳米棒和花状ZnO纳米结构为单晶,生长方向均沿(0001)方向。ZnO纳米球则为多晶。  相似文献   

17.
Variable-aspect-ratio (length/diameter), one-dimensional (1-D) ZnO nanostructures (nanorods and nanowires) were prepared in alcohol/water solution by reacting a Zn2+ precursor with an organic weak base, tetramethylammonium hydroxide (Me4NOH). The effect of the experimental parameters (temperature, base concentration, reaction time, and water content) on nucleation, growth, and the final morphology of the ZnO nanostructures was investigated. The low-temperature syntheses (75-150 degrees C) yielded aspect ratios of the 1-D ZnO nanostructures that depended on the water content. The individual ZnO nanorods and nanowires were determined to be perfect, single crystals with their c axes as the primary growth direction.  相似文献   

18.
We present a study of spectroscopic identification towards the molecular aggregates of zinc tetraphenylporphyrin(ZnTPP) illustrating how the energy states and intermolecular interactions determine the tunable properties of functional materials in condensation processes. Distinguishable fingerprints of ZnTPP nanorods and nanosheets are addressed utilizing X-ray diffraction(XRD), Raman and UV-vis absorption spectroscopies. Although these ZnTPPs are assigned to J-aggregation at different extent, the spectral analysis reveals a significant role of the intermolecular interactions associated with varying mesoscale architectures. Energy decomposition analysis(EDA) revealed that the varied ZnTPP aggregates are stabilized by altered dispersion interactions due to the dominant π…π stacking between the monomers.  相似文献   

19.
We describe herein the design, synthesis and detailed structural characterization of hybrid 1D nanostructures. They are prepared by supramolecular self‐assembly of oligothiophene molecules on the surface of zinc oxide nanorods in solution at room temperature. Electronic absorption spectroscopy and X‐ray diffraction show that both organic and inorganic components in the coaxial p–n heterojunctions are crystalline. Especially, it is demonstrated that the organic compounds form a self‐assembled monolayer at the surface of the nanorods, which is not the case when zinc oxide quantum dots are instead used. As a result of their hybrid nature, the 1D nanostructures lead to ambipolar semiconducting nanostructured materials as active layers in field‐effect transistors.  相似文献   

20.
This Letter describes the first synthesis of fivefold twinned nanorods and right bipyramids of palladium in an aqueous solution, with ascorbic acid as a reducing agent and in the presence of bromide. Like the silver system, these two types of nanostructures are derived from multiple and single twinned seeds, respectively. The ascorbic acid, bromide, and reaction temperature all play important roles in the synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号