首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
Cytotoxic effect of either cisplatin or p53 gene transfection of lung cancer cells may be different depending on the p53 status of cells. We investigated cytotoxic effects on the combined treatment of cisplatin and adenovirus mediated p53 gene transfer (Avp53) in both H460 and H1299 cells in vitro. The results showed the highest numbers of apoptotic cells in both H460 and H1299 cells following the combined treatment regardless of p53 status in comparison with either cisplatin or Avp53 alone. The expression levels of p53, p21, Bax and ICE were examined to understand a possible cellular signal path of the combined treatment. In western analyses, the patterns of phosphorylated p53 protein were different between Avp53 and combined treatment. The expressions of p21 and Bax were increased in combined treatment, whereas the cleaved form of ICE (20 kD) was not detected. These results suggest that cisplatin induced p53 protein phosphorylation and may activate the downstream of p53 gene expression such as p21 and Bax. The enhanced apoptosis of lung cancer cells by the combined treatment may be useful in the development of clinical therapeutic modality of lung tumors.  相似文献   

2.
To screen the differentially expressed microRNAs related to radio-resistance, we compared the microRNA profiles of lung cancer cells with different responses to ionizing radiation (IR). Of 328 microRNAs in microarray, 27 microRNAs were differentially expressed in NCI-H460 (H460) and NCI-H1299 (H1299) cells. Among them, let-7g was down-regulated in radio-resistant H1299 cells, and the level of let-7g was higher in radio-sensitive cells like Caski, H460, and ME180 in qRT-PCR analysis than in radio-resistant cells like A549, H1299, DLD1, and HeLa. Over-expression of let-7g in H1299 cells could suppress the translation of KRAS, and increase the sensitivity to IR. When we knockdown the expression of LIN28B, an upstream regulator of let-7g, the level of mature let-7g was increased in H1299 cells and the sensitivity to IR was also enhanced in LIN28B knockdown cells. From these data, we suggest that LIN28B plays an important role in radiation responses of lung cancer cells through inhibiting let-7g processing and increasing translation of KRAS.  相似文献   

3.
Allyl sulfur compounds play a major role in the chemoprevention against carcinogenesis. The present study compared the antiproliferative effects of diallyl sulfide (DAS), diallyl disulfide (DADS) and garlic extract on p53-wild type H460 and p53-null type H1299 non small cell lung cancer cells (NSCLC). The DAS and DADS treatment of both H460 and H1299 cells resulted in the highest numbers of cells in apoptotic state as measured by acridine orange staining, however, garlic extract treatment did not induce any significant apoptotic cells by MTT assay. DADS was found to be more effective in inducing apoptosis on NSCLC. The level of p53 protein in H460 cell was increased following DADS treatment. DAS and garlic extract treatment of H460 cells induced a rise in the level of Bax and a fall of Bcl-2 level. These results demonstrate that DAS, DADS and garlic extract are effective in reduction of anti-proliferative gene in NSCLC and suggest that modulation of apoptosis-associated cellular proteins by DAS, DADS and garlic extract may be the mechanism for apoptosis which merit further investigation as potential chemoprevention agents.  相似文献   

4.
The activation of nuclear factor-kappa B1 (NFkB1) in cancer cells may confer resistance to ionizing radiation (IR). To enhance the therapeutic efficiency of IR in lung cancer, we screened for microRNAs (miRNAs) that suppress NFkB1 and observed their effects on radiosensitivity in a human lung cancer cell line. From time series data of miRNA expression in γ-irradiated H1299 human lung cancer cells, we found that the expression of miR-9 was inversely correlated with that of NFκB1. Overexpression of miR-9 down-regulated the level of NFκB1 in H1299 cells, and the surviving fraction of γ-irradiated cells was decreased. Interestingly, let-7g also suppressed the expression of NFκB1, although there was no canonical target site for let-7g in the NFκB1 3' untranslated region. From these results, we conclude that the expression of miR-9 and let-7g could enhance the efficiency of radiotherapy for lung cancer treatment through the inhibition of NFκB1.  相似文献   

5.
6.
Herbimycin A (HA), as in Geldanamycin, binds to conserved pockets of heat shock protein 90 (Hsp90) and inhibits its chaperone functions. Hsp90 plays an integral role in cancer cell growth and survival, because it maintains the stability of several key proteins by its chaperone's activity. It is known that some of the proteins associated with radiation responses are functionally stabilized by Hsp90. In this study, we investigated the effect of HA on radiosensitivity in human cancer cells and the mechanism related to the sensitization. In order to gain a mechanistic insight of this sensitization, we examined repair of DNA double-strand breaks (DSBs) in irradiated human cancer cells pre-treated with HA, as unrepaired DSBs are thought to be the main cause of radiation-induced cell death. Cellular radiosensitivity was determined by clonogenic assay, and the DSB rejoining kinetics was examined by constant field gel electrophoresis. SQ-5, a lung squamous carcinoma cell line, showed synergistic increase in radiosensitivity when cells were pre-treated with HA. In addition, HA significantly inhibited repair of radiation-induced DSBs. These results suggest that the combination of HA and ionizing radiation may be a useful therapeutic strategy for treating certain cancer cells.  相似文献   

7.
8.
9.
10.
p53 is a tumor suppressor gene and mutation of p53 is a frequent event in skin cancer. The wild-type p53 encodes for a 53-kD phosphoprotein that plays a pivotal role in regulating cell growth and cell death. The wt-p53 gene is also called "guardian of the genome", for its role in preventing the accumulation of genetic alterations, observed in cancer cells. The wild-type p53 protein plays a central role in the response of the cell to DNA damage. UV, present in sunlight, is one of the most ubiquitously present DNA damage inducing stress conditions to which skin cells are exposed. The wt-p53 protein accumulates in human skin cells in vitro and in human skin in vivo upon UV irradiation. This upregulation mounts a protective response against permanent DNA damage through transactivation of either cell cycle arrest genes and DNA repair genes or genes that mediate the apoptotic response. The molecular events which regulate the activity of the wt-p53 protein activity are only beginning to be described.  相似文献   

11.
The objective of this study was to evaluate the time-course effects of UV-B exposure on expression of genes involved in the DNA repair system of zebrafish ( Danio rerio ) hepatocytes, a highly competent species in terms of damage repair induced by UV radiation. For gene expression analysis (RT-PCR), cells were exposed to 23.3 mJ cm−2 UV-B, which was the dose that affected viable cell number (reduction of 30% when compared with the control group) and produced no visual alteration on cell morphology. The early response observed (6 h) showed induction in the expression of the CDKI gene (cyclin-dependent kinase inhibitor) and genes related to DNA damage repair (mainly XPC and DDB2 ), while the late response observed (24 h) was more related to up-regulation of p53 and genes involved in cell cycle arrest ( gadd45a , cyclinG1 ). In all times analyzed, the anti-apoptotic gene Bcl-2 was down-regulated. Another interesting result observed was the up-regulation of the Apex- 1 gene after UV-B exposure, which could indicate the induction of oxidative lesions in the DNA molecule. In conclusion, these results demonstrate an activation of the DNA repair system in hepatocytes of zebrafish exposed to UV-B radiation, mainly involving the participation of p53.  相似文献   

12.
In this study, we investigated whether the spectrum of p53 mutations in skin tumors induced in hairless SKH-hr1 mice by a solar simulator (290–400 nm) are similar to those found in skin tumors induced in C3H mice by UV radiation from unfiltered (250–400 nm) and Kodacelfiltered (290–400 nm) FS40 sunlamps. Analysis of tumor DNA for p53 mutations revealed that 14 of 16 (87.5%) SkH-hr1 skin tumors induced by the solar simulator contained mutations. Single C → T transitions at dipyrimidine sequences located on the nontranscribed DNA strand were the most predominant type of p53 mutation. Remarkably, 52% of all p53 mutations in solar simulator-induced SKH-hr1 skin tumors occurred at codon 270, which is also a hotspot in C3H skin tumors induced by unfiltered and Kodacel-filtered FS40 sunlamps. However, T → G transversions, which are hallmarks of UVA-induced mutations, were not detected in any of the solar simulator-induced skin tumors analyzed. These results demonstrate that the p53 mutation spectra seen in solar simulator-induced SKH-hr1 skin tumors are similar to those present in unfiltered and Kodacel-filtered FS40 sunlamp-induced C3H skin tumors. In addition, our data indicate that the UVA present in solar simulator radiation does not play a role in the induction of p53 mutations that contribute to skin cancer development.  相似文献   

13.
Abstract— Ultraviolet A (UVA,315–400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action.  相似文献   

14.
During radiotherapy of cancer, neighboring normal cells may receive sub-lethal doses of radiation. To investigate whether such low levels of radiation modulate normal cell responses to death stimuli, primary cultured human fibroblasts were exposed to various doses of gamma-rays. Analysis of cell viability using an exclusion dye propidium iodide revealed that the irradiation up to 10 Gy killed the fibroblasts only to a minimal extent. In contrast, the cells efficiently lost their viability when exposed to 0.5-0.65 mM H(2)O(2). This type of cell death was accompanied by JNK activation, and was reversed by the use of a JNK-specific inhibitor SP600125. Interestingly, H(2)O(2) failed to kill the fibroblasts when these cells were pre-irradiated, 24 h before H(2)O(2) treatment, with 0.25-0.5 Gy of gamma-rays. These cytoprotective doses of gamma-rays did not enhance cellular capacity to degrade H(2)O(2), but elevated cellular levels of p21(Cip/WAF1), a p53 target that can suppress H(2)O(2)-induced cell death by blocking JNK activation. Consistently, H(2)O(2)-induced JNK activation was dramatically suppressed in the pre-irradiated cells. The overall data suggests that ionizing radiation can impart normal fibroblasts with a survival advantage against oxidative stress by blocking the process leading to JNK activation.  相似文献   

15.
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL known to activate NF-kappaB in number of tumor cells including A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. Pretreatment with MG132 which is a well-known NF-kappaB inhibitor by blocking degradation of IkappaBalpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappaB activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappaB activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.  相似文献   

16.
17.
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.  相似文献   

18.
A number of 2,3-diarylquinoline derivatives were synthesized and evaluated for antiproliferative activities against the growth of six cancer cell lines including human hepatocellular carcinoma (Hep G2 and Hep 3B), non-small cell lung cancer (A549 and H1299), and breast cancer (MCF-7 and MDA-MB-231) cell lines. The preliminary results indicated that 6-fluoro-2,3-bis{4-[2-(piperidin-1-yl)ethoxy]phenyl}quinoline (16b) was one of the most active compounds against the growth of Hep 3B, H1299, and MDA-MB-231 with a GI(50) value of 0.71, 1.46, and 0.72 μM respectively which was more active than tamoxifen. Further investigations have shown that 16b induced cell cycle arrest at G2/M phase followed by DNA fragmentation via an increase in the protein expression of Bad, Bax and decrease in Bcl-2, and PARP which consequently cause cell death.  相似文献   

19.
Charged-particle radiotherapy (CPRT) utilizing low and high linear energy transfer (low-/high-LET) ionizing radiation (IR) is a promising cancer treatment modality having unique physical energy deposition properties. CPRT enables focused delivery of a desired dose to the tumor, thus achieving a better tumor control and reduced normal tissue toxicity. It increases the overall radiation tolerance and the chances of survival for the patient. Further improvements in CPRT are expected from a better understanding of the mechanisms governing the biological effects of IR and their dependence on LET. There is increasing evidence that high-LET IR induces more complex and even clustered DNA double-strand breaks (DSBs) that are extremely consequential to cellular homeostasis, and which represent a considerable threat to genomic integrity. However, from the perspective of cancer management, the same DSB characteristics underpin the expected therapeutic benefit and are central to the rationale guiding current efforts for increased implementation of heavy ions (HI) in radiotherapy. Here, we review the specific cellular DNA damage responses (DDR) elicited by high-LET IR and compare them to those of low-LET IR. We emphasize differences in the forms of DSBs induced and their impact on DDR. Moreover, we analyze how the distinct initial forms of DSBs modulate the interplay between DSB repair pathways through the activation of DNA end resection. We postulate that at complex DSBs and DSB clusters, increased DNA end resection orchestrates an increased engagement of resection-dependent repair pathways. Furthermore, we summarize evidence that after exposure to high-LET IR, error-prone processes outcompete high fidelity homologous recombination (HR) through mechanisms that remain to be elucidated. Finally, we review the high-LET dependence of specific DDR-related post-translational modifications and the induction of apoptosis in cancer cells. We believe that in-depth characterization of the biological effects that are specific to high-LET IR will help to establish predictive and prognostic signatures for use in future individualized therapeutic strategies, and will enhance the prospects for the development of effective countermeasures for improved radiation protection during space travel.  相似文献   

20.
The p53 tumor suppressor has long been envisaged to preserve genetic stability by the induction of cell cycle checkpoints and apoptosis. More recently, p53 has been implicated to play roles in DNA repair responses to genotoxic stresses. UV-damage and the damage caused by certain chemotherapeutics including cisplatin and nitrogen mustards are known to be repaired by the nucleotide excision repair (NER) pathway which is reportedly regulated by p53 and its downstream genes. There are evidences to suggest that the base excision repair (BER) induced by the base-damaging agent methyl methanesulfonate (MMS) is partially deficient in cells lacking functional p53. This result suggests that the activity of BER might be also dependent on the p53 status. In this review, we discuss the possibilities that p53 regulates BER as well as NER; these are one of the most significant potentials of p53 tumor suppressor for repairing the vast majority of DNA damages that is incurred from various environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号