首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li ZG  Ando K  Yu JQ  Liu AQ  Zhang JB  Ohl CD 《Lab on a chip》2011,11(11):1879-1885
A method for on-demand droplet fusion in a microfluidic channel is presented using the flow created from a single explosively expanding cavitation bubble. We test the technique for water-in-oil droplets, which are produced using a T-junction design in a microfluidic chip. The cavitation bubble is created with a pulsed laser beam focused into one droplet. High-speed photography of the dynamics reveals that the droplet fusion can be induced within a few tens of microseconds and is caused by the rapid thinning of the continuous phase film separating the droplets. The cavitation bubble collapses and re-condenses into the droplet. Droplet fusion is demonstrated for static and moving droplets, and for droplets of equal and unequal sizes. Furthermore, we reveal the diffusion dominated mixing flow and the transport of a single encapsulated cell into a fused droplet. This laser-based droplet fusion technique may find applications in micro-droplet based chemical synthesis and bioassays.  相似文献   

2.
We investigate the nonequilibrium behavior of two-dimensional gas bubbles in Langmuir monolayers. A cavitation bubble is induced in liquid expanded phase by locally heating a Langmuir monolayer with an IR-laser. At low IR-laser power the cavitation bubble is immersed in quiescent liquid expanded monolayer. At higher IR-laser power thermo capillary flow around the laser-induced cavitation bubble sets in. The thermo capillary flow is caused by a temperature dependence of the gas/liquid line tension. The slope of the line tension with temperature is determined by measuring the thermo capillary flow velocity. Thermodynamically stable satellite bubbles are generated by increasing the surface area of the monolayer. Those satellite bubbles collide with the cavitation bubble. Upon collision the satellite bubbles either coalesce with the cavitation bubble or slide past the cavitation bubble. Moreover we show that the satellite bubbles can also be produced by the emission from the laser-induced cavitation bubbles.  相似文献   

3.
Dijkink R  Ohl CD 《Lab on a chip》2008,8(10):1676-1681
Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 microm3 within 75 micros against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close to the channel opening. High-speed photography at 1 million frames s(-1) resolves the flow in the supply channel, pump channel, and close to the cavity. The elasticity of the material affects the overall fluid flow. Continuous pumping at repetition rates of up to 5 Hz through 6 mm long square channels of 20 microm width is shown. A parameter study reveals the key-parameters for operation: the distance between the laser focus and the channel, the maximum bubble size, and the chamber geometry.  相似文献   

4.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

5.
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications.  相似文献   

6.
The interfacial packing behavior of N-myristoyldimyristoylphosphatidylethanolamine (N-14:0 DMPE) and its interaction with cholesterol were characterized and compared to the behavior of dimyristoylphosphatidylethanolamine (DMPE) using an automated Langmuir type film balance. Surface pressure and surface potential were monitored as a function of lipid cross-sectional molecular area. N-14:0 DMPE exhibited two-dimensional (2D) phase transitions of a liquid-expanded to condensed nature at many temperatures in the 15-30 °C range, but isotherms showed only condensed behavior at 15 °C. The sharp decline in the surface compressional moduli upon entering the 2D-transition region is consistent with differences in the partial molar areas of coexisting liquid-expanded (chain-disordered) and condensed (chain-ordered) phases. Including Ca(2+) in the subphase beneath the negatively charged N-14:0 DMPE caused a downward shift in the 2D-transition onset pressure even in the presence of 100 mM NaCl. The average dipole moments perpendicular to the lipid-water interface for N-14:0 DMPE's liquid-expanded and condensed phases were higher than those of DMPE. At surface pressures sufficiently low (<10 mN/m) to produce liquid-expanded phase behavior in pure N-14:0 DMPE, mixing with cholesterol resulted in a classic "condensing effect". Maximal area condensation was observed near equimolar N-14:0 DMPE/cholesterol. Insights into mixing behavior at high surface pressures that mimic the lipid cross-sectional areas of biomembranes were provided by analyzing the surface compressional moduli as a function of cholesterol mole fraction. Complex mixing patterns were observed that deviated significantly from theoretical ideal mixing behavior suggesting the presence of lipid "complexes" and/or a liquid-ordered phase at high sterol mole fractions (>0.35) and low to intermediate surface pressures (<20 mN/m) as well as the possible coexistence of relatively immiscible solid phases at higher surface pressures (e.g., 35 mN/m).  相似文献   

7.
The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique.  相似文献   

8.
Gac SL  Zwaan E  van den Berg A  Ohl CD 《Lab on a chip》2007,7(12):1666-1672
We report here the sonoporation of HL60 (human promyelocytic leukemia) suspension cells in a microfluidic confinement using a single laser-induced cavitation bubble. Cavitation bubbles can induce membrane poration of cells located in their close vicinity. Membrane integrity of suspension cells placed in a microfluidic chamber is probed through either the calcein release out of calcein-loaded cells or the uptake of trypan blue. Cells that are located farther away than four times Rmax (maximum bubble radius) from the cavitation bubble center remain fully unaffected, while cells closer than 0.75 Rmax become porated with a probability of >75%. These results enable us to define a distance of 0.75 Rmax as a critical interaction distance of the cavitation bubble with HL60 suspension cells. These experiments suggest that flow-induced poration of suspension cells is applicable in lab-on-a-chip systems, and this might be an interesting alternative to electroporation.  相似文献   

9.
Jun Yang  Li Qi  Yi Chen  Huimin Ma 《中国化学》2012,30(8):1793-1796
In this work, a 3D mixer has been conceived based on the splitting and recombining mechanism with simple topology structure. This mixer can present excellent performance at extremely low Reynolds number, which is very important for the practical use. Further research exhibits that the mixing also can be realized via the chaotic advection that occurred at decreased aspect ratio of channel. Thus, the changeable mechanism of mixer shows potential of being used widely. Meanwhile, mixing process has been confirmed in a fabricated structure. The simulated flow patterns reappear in a scaled‐up mixer and full mixing can be achieved in 8 mm channel length at varied flow rate. Due to the high efficiency and easy fabrication, this 3D mixer possesses great prospect for a large number of microfluidic systems.  相似文献   

10.
Enhancement of microfluidic mixing using time pulsing   总被引:14,自引:0,他引:14  
Glasgow I  Aubry N 《Lab on a chip》2003,3(2):114-120
Many microfluidic applications require the mixing of reagents, but efficient mixing in these laminar (i.e., low Reynolds number) systems is typically difficult. Instead of using complex geometries and/or relatively long channels, we demonstrate the merits of flow rate time dependency through periodic forcing. We illustrate the technique by studying mixing in a simple "T" channel intersection by means of computational fluid dynamics (CFD) as well as physically mixing two aqueous reagents. The "T" geometry selected consists of two inlet channel segments merging at 90 degrees to each other, the outlet segment being an extension of one of the inlet segments. All channel segments are 200 microm wide by 120 microm deep, a practical scale for mass-produced disposable devices. The flow rate and average velocity after the confluence of the two reagents are 48 nl s(-1) and 2 mm s(-1) respectively, which, for aqueous solutions at room temperature, corresponds to a Reynolds number of 0.3. We use a mass diffusion constant of 10(-10) m(2) s(-1), typical of many BioMEMS applications, and vary the flow rates of the reagents such that the average flow rate remains unchanged but the instantaneous flow rate is sinusoidal (with a DC bias) with respect to time. We analyze the effect of pulsing the flow rate in one inlet only as well as in the two inlets, and demonstrate that the best results occur when both inlets are pulsed out of phase. In this case, the interface is shown to stretch, retain one fold, and sweep through the confluence zone, leading to good mixing within 2 mm downstream of the confluence, i.e. about 1 s of contact. From a practical viewpoint, the case where the inlets are 180 degrees out of phase is of particular interest as the outflow is constant.  相似文献   

11.
In microfluidics the Reynolds number is small, preventing turbulence as a tool for mixing, while diffusion is that slow that time does not yield an alternative. Mixing in microfluidics therefore must rely on chaotic advection, as well-known from polymer technology practice where on macroscale the high viscosity makes the Reynolds numbers low and diffusion slow. The mapping method is used to analyze and optimize mixing also in microfluidic devices. We investigate passive mixers like the staggered herringbone micromixer (SHM), the barrier embedded micromixer (BEM) and a three-dimensional serpentine channel (3D-SC). Active mixing is obtained via incorporating particles that introduce a hyperbolic flow in e.g. two dimensional serpentine channels. Magnetic beads chains-up in a flow after switching on a magnetic field. Rotating the field creates a physical rotor moving the flow field. The Mason number represents the ratio of viscous forces to the magnetic field strength and its value determines the fate of the rotor: a single, an alternating single and double, or a multiple part chain-rotor results. The type of rotor determines the mixing quality with best results in the alternating case where crossing streamlines introduce chaotic advection. Finally, an active mixing device is proposed that mimics the cilia in nature. The transverse flow induced by their motion indeed enhances mixing at the microscale.  相似文献   

12.
Over decades, information about the rheological properties of the condensed monolayer phases has been obtained by introduction of a two-dimensional compressibility which is defined on the basis of the surface pressure-molecular area (Pi-A) features of the monolayer. Since the last decade, fundamental progress was attained in the experimental determination of the main characteristics of Langmuir monolayers in microscopic and molecular scale. Already smallest changes in the molecular structure of the amphiphile can result in changes in the molecular arrangement in the monolayer and thus, in changes of the main characteristics of the monolayer such as, the surface pressure-area per molecule (Pi-A) isotherms, the shape and texture of the condensed phase domains and the two-dimensional lattice structure. As the classical equations of state allowed only characterisation of the fluid (gaseous, liquid-expanded) state, thermodynamically based equations of state, which consider also the aggregation of the monolayer material to the condensed phase, have been developed. The present review focuses particularly to amphiphilic monolayers, the Pi-A isotherms of which indicate the existence of two condensed phases. For this case, the experimental results of the differences in the structure features and phase properties are discussed. The generalisation of the equation of state for Langmuir monolayers developed for the case that one, two or more phase transitions in the monolayer take place, is in agreement with the experimental results that the two-dimensional compressibility of the condensed phases undergoes a jump at the phase transition, whereas the compressibility is proportional to the surface pressure within one of the condensed phases. An example is presented which explains the procedure of the theoretical analysis of Pi-A isotherms indicating the existence of two condensed phases. An element of the procedure is the application of the general principle that the behaviour of any thermodynamic system is determined by the stability condition. An interesting anisotropy of the compressibility is revealed by GIXD studies of the S-phase of octadecanol monolayers. However, similar studies performed close to the LS-S-phase transition would result in a thermodynamically impossible negative compressibility. Close to this phase transition, the compressibility cannot be determined from the positions of the maxima because the monolayer is in a disordered state attributed to elastic distortions by fluctuations with the structure of the new phase in the surrounding matrix without destroying the quasi-long-range positional order.  相似文献   

13.
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.  相似文献   

14.
This paper characterizes the conditions required to form nanoliter-sized droplets (plugs) of viscous aqueous reagents in flows of immiscible carrier fluid within microfluidic channels. For both non-viscous (viscosity of 2.0 mPa s) and viscous (viscosity of 18 mPa s) aqueous solutions, plugs formed reliably in a flow of water-immiscible carrier fluid for Capillary number less than 0.01, although plugs were able to form at higher Capillary numbers at lower ratios of the aqueous phase flow rate to the flow rate of the carrier fluid (in all the experiments performed, the Reynolds number was less than 1). The paper also shows that combining viscous and non-viscous reagents can enhance mixing in droplets moving through straight microchannels by providing a nearly ideal initial distribution of reagents within each droplet. The study should facilitate the use of this droplet-based microfluidic platform for investigation of protein crystallization, kinetics, and assays.  相似文献   

15.
Interfacial velocity measurements were performed in an optical annular channel, consisting of stationary inner and outer cylinders, a floor rotating at a constant rate, and a flat free surface on which an insoluble monolayer was initially spread. Measurements for essentially inviscid monolayers and some viscous monolayers on water show good agreement with numerical predictions for a Newtonian interface (Boussinesq-Scriven surface model) coupled to a bulk flow described by the Navier-Stokes equations. Here, we consider in detail a viscous monolayer, namely hemicyanine, and find that above a certain concentration, the monolayer does not behave Newtonian at a Reynolds number of about 250. We show that the discrepancies between the measurements and predicted Newtonian behavior are not due to compositional effects (i.e., nonuniform monolayer distribution), Reynolds number (i.e., inertia and/or secondary flows), or surface dilatational viscosity (which does not play any role in the parameter regime investigated). We show prima facie evidence that the observed shear thinning nature of the velocity profile is associated with a phase transition at C approximately 0.9 mg/m(2) at low Reynolds numbers. At large Reynolds numbers (Re=8500), hemicyanine is found to flow like a viscous Newtonian monolayer on the air/water interface, with viscosity dependent only on the local concentration.  相似文献   

16.
The glycosylphosphatidyl inositol(GPI)-anchored proteins are localized on the outer of the plasma membrane and clustered in membrane microdomain known as lipid rafts. Among them, mammalian alkaline phosphatase(AP) is an enzyme widely distributed. So, it has important biological significance to study the combination of AP with lipid monolayer. In our work, the interaction between AP and sphingomyelin has been studied at the air-buffer interface as a biomimetic membrane system by the Langmuir film technique and atomic force microscopy. The surface pressure-area isotherm for the mixed alkaline phosphatase/sphingomyelin monolayer shown the presence of a transition from a liquid-expanded phase to the liquid-expanded/liquidcondensed coexist phase. And the surface compressional modulus suggested the mixed alkaline phosphatase/sphingomyelin monolayer has larger compressibility compared with the pure sphingomyelin monolayer. Besides, according to the micrographs, we inferred when combined with lipid monolayer at the air-buffer interface, the AP molecules formed polymer not multilayer or micelle. And, according to the limiting molecules area of AP, we inferred that 12 AP molecules formed a hexagon polymer unit.  相似文献   

17.
Mixing a small amount of magnetic beads and regents with large volume samples evenly in microcavities of a microfluidic chip is always the key step for the application of microfluidic technology in the field of magnetophoresis analysis. This article proposes a microfluidic chip for DNA extraction by magnetophoresis, which relies on bubble rising to generate turbulence and microvortices of various sizes to mix magnetic beads with samples uniformly. The construction and working principle of the microfluidic chip are introduced. CFD simulations are conducted when magnetic beads and samples are irritated by the generation of gas bubbles with the variation of supply pressures. The whole mixing process in the microfluidic chip is observed through a high-speed camera and a microfluidic system when the gas bubbles are generated continuously. The influence of supply pressure on the mixing characteristics of the microfluidic chip is investigated and discussed with both simulation and experiments. Compared with magnetic mixing, bubble mixing can avoid the magnetic beads gather phenomenon caused by magnetic forces and provide a rapid and high efficient solution to realize mixing small amount of regents in large volume samples in a certain order without complex moving structures and operations in a chip. Two applications of mixing with the proposed microfluidic chip are also carried out and discussed.  相似文献   

18.
Wang S  Huang X  Yang C 《Lab on a chip》2011,11(12):2081-2087
Due to small channel dimensions and laminar flows, mixing in microfluidic systems is always a challenging task, especially for high viscous fluids. Here we report a method of enhancing microfluidic mixing for high viscous fluids using acoustically induced bubbles. The bubbles can be generated in an acoustically profiled microfluidic structure by using a piezoelectric disk activated at a working frequency range between 1.5 kHz and 2 kHz. The mixing enhancement is achieved through interactions between the oscillating bubbles and fluids. Both experimental studies and numerical simulations are conducted. In the experiments, DI water-glycerol mixture solutions with various viscosities were used. The results, based on the mixing efficiency calculated from experimentally acquired fluorescent images, showed that good mixing can occur in the DI water-glycerol solutions with their maximum viscosity up to 44.75 mPa s, which to our best knowledge is the highest viscosity of fluids in microfluidic mixing experiments. To explain the mechanisms of bubble generation, the numerical simulation results show that, corresponding to the actuations at the working frequency range used in the experiment, there exists a low pressure region where the pressure is lower than the water vapor pressure in the DI water-glycerol solutions, resulting in the generation of bubbles.  相似文献   

19.
Rapid droplet mixers for digital microfluidic systems   总被引:3,自引:0,他引:3  
Paik P  Pamula VK  Fair RB 《Lab on a chip》2003,3(4):253-259
The mixing of analytes and reagents for a biological or chemical lab-on-a-chip is an important, yet difficult, microfluidic operation. As volumes approach the sub-nanoliter regime, the mixing of liquids is hindered by laminar flow conditions. An electrowetting-based linear-array droplet mixer has previously been reported. However, fixed geometric parameters and the presence of flow reversibility have prevented even faster droplet mixing times. In this paper, we study the effects of varying droplet aspect ratios (height:diameter) on linear-array droplet mixers, and propose mixing strategies applicable for both high and low aspect ratio systems. An optimal aspect ratio for four electrode linear-array mixing was found to be 0.4, with a mixing time of 4.6 seconds. Mixing times were further reduced at this ratio to less than three seconds using a two-dimensional array mixer, which eliminates the effects of flow reversibility. For lower aspect ratio (相似文献   

20.
We report on a fluorescence microscopy study of the monolayer collapse and shedding behavior due to shell compression during the dissolution of air-filled, lipid-coated microbubbles in degassed media. The monolayer shell was comprised of saturated diacyl phosphatidylcholine (C12:0 to C22:0) and an emulsifier, poly(ethylene glycol)-40 stearate. The morphologies of monolayer collapse structures and shed particles were monitored as a function of phospholipid acyl chain length (n) and temperature. The two components formed a single miscible phase when the phospholipid was near or above its main phase transition temperature, and collapse occurred via suboptical particles to vesicles (both were shed) and tubes as chain length increased. Conversely, two-phase coexistence was observed when the lipid was below its main phase transition temperature. For these bubbles, a transition from primary collapse to secondary collapse was observed. Primary collapse was observed as a loss of expanded phase due to vesiculation. Secondary collapse involved the rapid propagation of monolayer folds and simultaneous deformation. For very rigid monolayers, we observed substantial surface buckling with simultaneous nucleation and growth of folds. The folds merged at a single point or region, providing a conduit for the entire excess lipid to shed in a single event, and the bubble smoothed and became more spherical. These results are discussed in the context of general binary phospholipid collapse behavior, microbubble dissolution behavior, medical applications, and the dissolution behavior of natural microbubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号