首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconfigurable molecular events are key to molecular machines. In response to external cues, molecular machines rearrange/change their structures to perform certain functions. Such machines exist in nature, for example cell surface receptors, and have been artificially engineered. To be able to build sophisticated and efficient molecular machines for an increasing range of applications, constant efforts have been devoted to developing new mechanisms of controllable structural reconfiguration. Herein, we report a general design principle for pH‐responsive DNA motifs for general DNA sequences (not limited to triplex or i‐motif forming sequences). We have thoroughly characterized such DNA motifs by polyacrylamide gel electrophoresis (PAGE) and fluorescence spectroscopy and demonstrated their applications in dynamic DNA nanotechnology. We expect that it will greatly facilitate the development of DNA nanomachines, biosensing/bioimaging, drug delivery, etc.  相似文献   

2.
Hierarchical structures are important for transferring and amplifying molecular functions to macroscopic properties of materials. In this regard, rodlike molecules have emerged as one of the most promising molecular building blocks to construct functional materials. Although the self-assembly of conventional molecules containing rodlike components generally results in nematic or layered smectic phases, due to the preferred parallel arrangements of rodlike components, extensive efforts have revealed that rational molecular design provides a versatile platform to engineer rich self-assembled structures. Herein, first successes achieved in polyphilic liquid crystals and rod–coil block systems are summarized. Special attention is paid to recent progress in the conjugation of rodlike building blocks with other molecular building blocks through the molecular Lego approach. Rod-based giant surfactants, sphere–rod conjugates, and dendritic rodlike molecules are covered. Future perspectives of the self-assembly of molecules containing rodlike components are also provided.  相似文献   

3.
Multiple stimuli-responsive molecular crystals are attracting extensive attentions due to their potential as smart materials, such as molecular machines, actuators, and sensors. However, the task of giving a single crystal multiple stimuli-responsive properties remains extremely challenging. Herein, we found two polymorphs (Form O and Form R) of a Schiff base compound, which could respond to multiple stimuli (external force, acid, heat). Form O and Form R have different elastic deformability, which can be attributed to the differences in the molecular conformation, structural packing and intermolecular interactions. Moreover, both polymorphs exhibit reversible bending driven by volatile acid vapor, which we hypothesize is caused by reversible protonation reaction of imines with formic acid. In addition, jumping can be triggered by heating due to the significant anisotropic expansion. The integration of reversible bending and jumping into one single crystal expands the application scope of stimuli-responsive crystalline materials.  相似文献   

4.
Controlling the morphology of supramolecular nanostructures in response to external stimuli is an important challenge in the development of functional soft materials. Here we show that a morphological transformation from 2D nanosheets to a network of 1D nanofibers is triggered by heating, which induces molecular conversion of a bolaamphiphile to a hydrogelator by means of a retro‐Diels–Alder reaction, thereby producing a new heat‐set supramolecular hydrogel. We anticipate that our design will be a starting point for more sophisticated supramolecular systems that integrate the thermodynamics of molecular assembly and the kinetics of chemical reactions to create complex supramolecular nanostructures.  相似文献   

5.
Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.  相似文献   

6.
《中国化学快报》2023,34(8):107896
To understand the deformation mechanism of molecular crystals under mechanical forces will accelerate the molecular design and preparation of deformable crystals. Herein, the relationship between structural halogenation and molecular-level stacking, micro/nanoscale surface morphology, and macroscopic mechanical properties are investigated. Elastic crystals of halo-pyrimidinyl carbazoles (CzM-Cl, CzM-Br and CzM-I) with lamellar structure and brittle crystal (CzM-F) were quantitatively analyzed by crystal energy framework (CEF) providing the inter/intralayer interaction energy (Inter/Intra-IE). It is revealed that the elastic crystals bend under external force as a result from stronger Intra-IE to prevent cleavage and weaker Inter-IE for the short-range movement of molecules on the slip plane. This research will provide an insight for the molecular design of flexible crystals and facilitate the development of next-generation smart crystal materials.  相似文献   

7.
Recent advances of a colloidal chemistry can offer great opportunities to fabricate and design nanocatalysts. Comprehensive understanding of a basic concept and theory of the colloidal synthetic chemistry facilitates to engineer elaborate nano-architectures such as bi- or multi-metallic, heterodimers, and core/shell. This colloidal solution technique not only enables to synthesize high surface mesoporous materials, but also provides a versatile tool to incorporate nanoparticles into mesoporous materials or onto substrates. For green chemistry, catalysis research has been pursued to design and fabricate a catalyst system that produces only one desired product (100% selectivity) at high turnover rates to reduce the production of undesirable wastes. Recent studies have shown that several molecular factors such as the surface structures, composition, and oxidation states affect the turnover frequency and reaction selectivity depending on the size, morphology, and composition of metal nanoparticles. Multipath reactions have been utilized to study the reaction selectivity as a function of size and shape of platinum nanoparticles. In the past, catalysts were evaluated and compared with characterizations before and after catalytic reaction. Much progress on in situ surface characterization techniques has permitted real-time monitoring of working catalysts under various conditions and provides molecular information during the reaction.  相似文献   

8.
Self-assembly of functionalized nanoscale building blocks is a promising strategy for "bottom-up" materials design. Recent experiments have demonstrated that the self-assembly of polyhedral oligomeric silsesquioxane (POSS) "nanocubes" functionalized with organic tethers can be utilized to synthesize novel materials with highly ordered, complex nanostructures. We have performed molecular simulations for a simplified model of monotethered POSS nanocubes to investigate systematically how the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tether lengths, and solvent conditions, can be manipulated to achieve useful structures via self-assembly. We report conventional lamellar and cylindrical structures that are typically found in block copolymer and surfactant systems, including a thermotropic order-order transition, but with interesting stabilization of the lamellar phase caused by the bulkiness and cubic geometry of the POSS nanocubes.  相似文献   

9.
Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross‐linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long‐lived photomechanical deformation in liquid‐crystal polymer networks.  相似文献   

10.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

11.
As a point of entry to investigate the potential of halogen-bonding interactions in the construction of functional materials and crystalline molecular machines, samples of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane (BIBCO) were synthesized and crystallized. Knowing that halogen-bonding interactions are common between electron-rich acetylenic carbons and electron-deficient iodines, it was expected that the BIBCO rotors would be an ideal platform to investigate the formation of a crystalline array of molecular rotors. Variable temperature single crystal X-ray crystallography established the presence of a halogen-bonded network, characterized by lamellarly ordered layers of crystallographically unique BIBCO rotors, which undergo a reversible monoclinic-to-triclinic phase transition at 110 K. In order to elucidate the rotational frequencies and the activation parameters of the BIBCO molecular rotors, variable-temperature (1)H wide-line and (13)C cross-polarization/magic-angle spinning solid-state NMR experiments were performed at temperatures between 27 and 290 K. Analysis of the (1)H spin-lattice relaxation and second moment as a function of temperature revealed two dynamic processes simultaneously present over the entire temperature range studied, with temperature-dependent rotational rates of k(rot) = 5.21 × 10(10) s(-1)·exp(-1.48 kcal·mol(-1)/RT) and k(rot) = 8.00 × 10(10) s(-1)·exp(-2.75 kcal·mol(-1)/RT). Impressively, these correspond to room temperature rotational rates of 4.3 and 0.8 GHz, respectively. Notably, the high-temperature plastic crystalline phase I of bicyclo[2.2.2]octane has a reported activation energy of 1.84 kcal·mol(-1) for rotation about the 1,4 axis, which is 24% larger than E(a) = 1.48 kcal·mol(-1) for the same rotational motion of the fastest BIBCO rotor; yet, the BIBCO rotor has three fewer degrees of translational freedom and two fewer degrees of rotational freedom! Even more so, these rates represent some of the fastest engineered molecular machines, to date. The results of this study highlight the potential of halogen bonding as a valuable construction tool for the design and the synthesis of amphidynamic artificial molecular machines and suggest the potential of modulating properties that depend on the dielectric behavior of crystalline media.  相似文献   

12.
At the brink of the 21st century, chemistry is increasingly concerned with the function that molecules fulfil as drugs, receptors, or-as ensemble of molecules-as materials. The capability of compounds to fulfil such functions cannot sufficiently be described by using only the terms composition and configuration. A decisive role is played in addition by the conformation of the molecules, which serves as the link between molecular composition and molecular function. Expressions such as "active conformation" or "competent conformation" allude to this aspect. Chemists have to develop an understanding how a flexible molecule adopts the conformation (a distinct shape) which is optimal for the function in question and how this process can be controlled. On the outset of such considerations, we may ask how nature succeeded in the process of evolution to endow flexible molecules with a preference to adopt the conformation which is optimal for the function it has to serve. In this review, I report on how we have reached a crude level of understanding of conformation design in nature with reference to the class of polyketide natural products, how we developed these insights into a conformation design of open-chain compounds, and which applications are already in sight.  相似文献   

13.
Soft materials possess several distinctive characteristics, such as controllable deformation, infinite degrees of freedom, and self‐assembly, which make them promising candidates for building soft machines, robots, and haptic interfaces. In this Review, we give an overview of recent advances in these areas, with an emphasis on two specific topics: bio‐inspired design and additive manufacturing. Biology is an abundant source of inspiration for functional materials and systems that mimic the function or mechanism of biological tissues, agents, and behaviors. Additive manufacturing has enabled the fabrication of materials and structures prevalent in biology, thereby leading to more‐capable soft robots and machines. We believe that bio‐inspired design and additive manufacturing have been, and will continue to be, important tools for the design of soft robots.  相似文献   

14.
Microarrays are a sensitive, specific, miniaturized devices that may be used to detect selected DNA sequences and proteins, or mutated genes associated with human diseases. Several methods have been developed to detect the binding of complementary molecules to microarrays by generating an optical signal. One of the most commonly used molecular labeling methods at present is fluorescence, but its application is expensive due to sophisticated equipment required to design the platform, hybridize it, and interpret the images derived from microarray-based studies. This is a drawback for its use in laboratories and clinical services. Another less expensive procedure having similar sensitivity and specificity is DNA and protein functional nanoparticles (FNP). Nanoparticles are sphere-like biocompatible materials made of inert silica, metal or crystals of a nanometer in size, which are generally coated with a thin gold layer. They may be used as hybridization probes in single nucleotide polymorphism (SNP) screening and to detect biological markers for cancer, infection, and cardiovascular diseases.  相似文献   

15.
Recent developments have helped to extend the repertoire of mixed-valent ruthenium and osmium complexes beyond conventional systems. This extension has been achieved by using sophisticated ligands and by creating more variegated coordination patterns. The strategies employed include the use of multidentate ligands (which give rise to multinuclear and chelate complexes) and the use several redox active components (non-innocent ligands and oxidation-state ambivalence). The results offer enhanced chemical insight into metal-ligand electron-transfer situations and suggest that mixed-valent materials may eventually be exploited in molecular electronics and molecular computing.  相似文献   

16.
Molecular reactors are miniature vessels for the assembly of reactants at the molecular level, in order to change the nature of chemical transformations. It seems probable that those that will find most immediate applications are those that change product ratios or give products which would not readily form in the absence of the reactors, and thereby afford easy access to materials that are otherwise difficult to obtain. Molecular machines consist of interrelated parts with separate functions and perform some kind of work, at the molecular level. Practical examples are likely to be relatively uncomplicated and not based on individual functions of single-molecule devices. Instead they will probably rely on extensive redundancy of the molecular components and their interactions and reactions, as well as of the machines themselves.  相似文献   

17.
Nanocatalysis: Mature Science Revisited or Something Really New?   总被引:3,自引:0,他引:3  
"Nanomania" has reached the area of heterogeneous catalysis. Nanosized catalyst constituents are important for functions that require structural control over several scales of dimension. Nanocatalysis may be understood as a redefinition of catalyst synthesis: multidimensional structural control is exerted by considering catalysts as inorganic polymers rather than as close-packed crystals. Primary, secondary, and tertiary structural hierarchies translate into molecular building blocks and linkers, the defect structure of crystals, and particle morphology. High-throughput techniques and in situ synthetic analysis are the tools required to arrive at better defined catalytic materials that can fulfil the high expectations created by the incorporation of catalysts into the "nano" research field.  相似文献   

18.
Liquid crystals are molecular materials that combine anisotropy with dynamic nature. Recently, the use of hydrogen bonding for the design of functional liquid crystalline materials has been shown to be a versatile approach toward the control of simple molecularly assembled structures and the induction of dynamic function. A variety of hydrogen‐bonded liquid crystals has been prepared by molecular self‐assembly processes via hydrogen bond formation. Rod‐like and disk‐like low‐molecular weight complexes and polymers with side‐chain, main‐chain, network, and guest‐host structures have been built by the complexation of complimentary and identical hydrogen‐bonded molecules. These materials consist of closed‐type hydrogen bondings. Another type of hydrogen‐bonded liquid crystals consists of open‐type hydrogen bonding. In this case, the introduction of hydrogen bonding moieties, such as hydroxyl groups, induces microphase segregation leading to liquid crystalline molecular order. Moreover, liquid crystalline physical gels have been prepared by the molecular aggregation of hydrogen‐bonded molecules in non‐hydrogen‐bonded liquid crystals. They show significant electrooptical properties. An anisotropic gel is a new type of anisotropic materials forming heterogeneous structures.  相似文献   

19.
20.
基于PET过程的分子开关型荧光传感器研究进展   总被引:1,自引:0,他引:1  
基于PET过程的分子开关型荧光传感器研究进展;光诱导电子转移;给体;受体;分子开关;光物理技术  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号