首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron oxides are considered as the promising pseudocapacitive materials for high-performance supercapacitors due to their high theoretical specific capacitance, low cost, environmental benignity, and natural abundance. In this work, we study capacitive behavior of different magnetite (Fe3O4) nanoparticles/carbon black (CB) composites ratios. These composites are synthesized by the coprecipitation method in the presence of ultrasonic waves. The structural and morphological characteristics of the magnetite/CB composites are investigated by X-ray diffraction and scanning electron microscopy, respectively. The electrochemical performance of magnetite/CB composite electrodes is tested by cyclic voltammetry and galvanostatic charge/discharge in a Na2SO4 electrolyte. The results indicate that the magnetite/CB electrodes show typical pseudo-capacitive behavior in Na2SO4 solution. Moreover, in comparison to the pure Fe3O4 (37 F g?1) and carbon black (23 F g?1), the as-prepared 45 % magnetite/CB nanocomposite electrode shows a higher specific capacitance (300 F g?1). Additionally, the supercapacitor device of the magnetite/CB nanocomposite exhibits excellent long cycle life along with 98.5 % specific capacitance retained after 10,000 cycle tests.  相似文献   

2.
A porous conducting polymer/heteropolyoxometalate hybrid material that displays high specific capacitance and low ionic resistance has been prepared for electrochemical supercapacitor applications. Polypyrrole/phosphomolybdate composite films were chemically synthesized in tetrahydrofuran in the presence of sodium sulfate, which acts as a porogen. While the phosphomolydic acid could be removed from the film upon rinsing with pure tetrahydrofuran or acetone, rinsing with water or methanol resulted in retention of the heteropolyoxometalate at a level high enough to easily observe its electrochemistry. The retained phosphomolybdate exhibits fast and reversible redox behavior, adding a significant amount of pseudocapacitance to the polymer. Porous films were obtained by leaching out the sodium sulfate porogen from the films using water. The morphology obtained using this method is altered by varying the monomer-to-porogen ratio. Increasing the porosity increases the rate at which the hybrid material can be charged/discharged (i.e., oxidized/reduced) by increasing the ionic conductivity and in turn lowering the resistor-capacitor time constant of the material. The ability to tune the porosity of the material allows the optimization of performance characteristics for use in supercapacitor applications. Impedance measurements indicate that the ionic conductivity of these porous structures can be increased more than an order of magnitude over that observed for standard conducting polymer films and that the hybrid material displays peak specific capacitance of around 700 F/g as well as excellent reversibility and cyclability.  相似文献   

3.
A series of high performance ordered mesoporous carbon/nickel compounds composites have been synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. X-ray diffraction (XRD), N2 adsorption/desorption isotherms and transmission electron microscopy (TEM) are used to characterize the composites derived at the hydrothermal temperature of 125, 150, 175, 200, 250, 275 and 300 °C. The formation of nanosized nickel compounds, fully inside the mesopore system, was confirmed with XRD and TEM. An N2 adsorption/desorption isotherms measurements still revealed mesoporosity for the host/guest compounds. It is noteworthy that an OMC/nickel nitrate hydroxide hydrate composite (OMCN-150) exhibits more excellent performance. Based on the various hydrothermal temperatures of the composite, the capacitance of an OMCN-150 delivering the best electrochemical performance is about 2.4 (5 mV s−1) and 1.5 (50 mV s−1) times of the pristine OMC. The capacitance retention of an OMCN-150 is 96.1%, which indicates that the electrochemical performance of the supercapacitor is improved greatly, and represents novel research and significant advances in the field of electrode composite materials for supercapacitor.  相似文献   

4.
A heterogeneous polymeric catalyst was synthesized by immobilization of copper ions in a graphene oxide/poly(vinyl imidazole) nanocomposite. This catalyst has proven to be highly active in a practical protocol for click synthesis of 1,2,3‐triazole via one‐pot three‐component cycloaddition of halides, terminal alkynes and sodium azide. The reaction was carried out in water medium and good to excellent yields of products were obtained using only 1.0 mol% of catalyst. The catalyst can be readily recovered and reused eight times under the described reaction conditions without significant loss of activity. The reaction also proceeded well with only 0.002 mol% of catalyst, which shows the high activity of the resulting copper‐loaded nanocomposite. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Ni(OH)2 was compounded to MnO2 in an easy liquid phase process to improve the diffusion process of the electrode. The as-prepared materials were a mixture of amorphous and nanocrystalline with aggregated nanoparticles forming slit-shaped pore structures. The composite has higher specific surface area and smaller pore volume compared with pristine MnO2. Electrochemical properties of the electrodes were carried out with cyclic voltammetry (CV), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy (EIS). The MnO2/Ni(OH)2 composites exhibited enhanced electrochemical properties than that of pristine MnO2. Remarkably, the composite which contains 3 % Ni(OH)2 exerted the best discharged specific of 408 F g?1 under 0.2 A g?1, much higher than 247 F g?1 of pristine MnO2 at the same current density. Better rate capability and cycling stability were also realized by the same composite in comparison.  相似文献   

6.
Nickel oxide/expanded graphite (NiO/EG) nanocomposites with different loading of EG were prepared through chemically depositing Ni(OH)2 in EG followed by thermal annealing and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) isotherm and electrochemical measurements. The prepared NiO/EG composites were found to be crystalline and highly porous with high specific surface area and pore volume. SEM analysis reveals uniform porous morphology for NiO in the NiO/EG-60 nanocomposites which shows good specific capacitance (510?F?g?1) at a current density of 100?mA?g?1 in 6?mol?L?1 KOH measured by chronopotentiometry employing a three-electrode system. The specific capacitance retention of the NiO/EG-60 nanocomposites was found to be ca. 95% after 500 continuous galvanostatic charge–discharge cycles, indicating that the NiO/EG nanocomposites can become promising electro-active materials for supercapacitor application.  相似文献   

7.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

8.
We report the preparation of a nickel-foam-supported graphene sheet/porous NiO hybrid film by the combination of electrophoretic deposition and chemical-bath deposition. The obtained graphene-sheet film of about 19 layers was used as the nanoscale substrate for the formation of a highly porous NiO film made up of interconnected NiO flakes with a thickness of 10-20 nm. The graphene sheet/porous NiO hybrid film exhibits excellent pseudocapacitive behavior with pseudocapacitances of 400 and 324 F g(-1) at 2 and 40 A g(-1), respectively, which is higher than those of the porous NiO film (279 and 188 F g(-1) at 2 and 40 A g(-1)). The enhancement of the pseudocapacitive properties is due to reinforcement of the electrochemical activity of the graphene-sheet film.  相似文献   

9.
In this study, poly(2,5-dihydroxyaniline) (PDHA) was successfully prepared by electrochemical method on the surface of active carbon (AC) electrodes. The physical and electrochemistry properties of PDHA/AC composite electrode compared with pure AC electrode were investigated by scanning electronic microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy, cycle life test. From SEM, PDHA presents nanofiber network morphology. The diameter of the nanofiber PDHA is about 200–300 nm. PDHA/AC composite electrode shows redox peaks in CV curve and voltage plateaus in galvanostatic charge–discharge curve, and all these indicate that PDHA/AC composite electrode has more advantages. The maintenance of the capacitance compared to initial cycle capacitance of composite electrode is about 90% during the charge–discharge cycles. In conclusion, The PDHA/AC composite electrode shows much higher specific capacitance (958 F g−1), better power characteristics, longer cycle life. Therefore, PDHA/AC composite electrodes were more promising for application in capacitor. This can be attributed to the introduction of nanofiber PDHA. The effect and role of PDHA in the composite electrodes were also discussed in detail.  相似文献   

10.
Journal of Thermal Analysis and Calorimetry - This paper reports the successful synthesis of NaX nanocrystals using an organic, additive-free hydrothermal approach. Then, solution casting was used...  相似文献   

11.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

12.
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages.  相似文献   

13.
Layered Co3O4 composed of oriented self-assembled micrometer-length rectangular 2D flakes has been successfully synthesized by a hydrothermal method in combination with subsequent calcination process. Structural and morphological characterizations were performed using powder X-ray diffraction and field emission scanning electron microscopy. The component and thermal stability of the sample were measured by FT-IR and thermal analyses, including thermogravimetry and differential thermal analysis. The electrochemical performances of the as-prepared Co3O4 product were investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and constant current charge/discharge techniques. The electrochemical results demonstrate that the layered Co3O4 product displays good capacitive behavior with a specific capacitance of 263 F?g?1 within a potential range of ?0.4–0.55 V at a current density of 1 A?g?1 and a large capacity retention with 89.4 % of the initial capacitance over 1,000 consecutive cycles at 3 A?g?1, indicating that the as-prepared Co3O4 product can be a promising electroactive material for supercapacitor.  相似文献   

14.
Journal of Solid State Electrochemistry - A hybrid material of electrochemical reduced TiO2 nanotubes/polypyrrole (r-TiO2 NTs/PPy) was successfully prepared through electrochemical reduction and...  相似文献   

15.
16.
卢丽敏  徐景坤 《高分子科学》2014,32(8):1019-1031
A novel graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene)(PEDOT-MeOH/GO) composite film was synthesized and utilized as an efficient electrode material for simultaneous detection of rutin and ascorbic acid(AA). PEDOT-MeOH/GO films were synthesized on glassy carbon electrode(GCE) by a facile one-step electrochemical approach and were characterized by scanning electron microscopy, UV-Vis spectroscopy, FTIR spectra and electrochemical methods. Then the PEDOT-MeOH/GO/GCE was applied successfully in the simultaneous detection of rutin and AA. The results showed that the oxidation peak currents of rutin and AA obtained at the PEDOT-MeOH/GO/GCE were much higher than those at the traditional conducting polymer PEDOT/GO/GCE, PEDOT-MeOH/GCE, PEDOT/GCE and bare GCE. Under optimized conditions, the linear ranges for rutin and AA are 20 nmol/L-10 μmol/L and 8 μmol/L-1 mmol/L, respectively. The detection limit is 6 nmol/L for rutin and 2 μmol/L for AA(S/N = 3), which are lower than those of the reported electrochemical sensors.  相似文献   

17.
The Si/SiO nanocomposite was synthesized by a sol–gel method in combination with a following heat-treatment process. It was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and capacity measurement as anode material for lithium ion battery. Si nanoparticles were coated with SiO and a core-shell structured nanocomposite was formed. The core-shell Si/SiO nanocomposite displays better reversibility of lithium insertion/extraction and higher coulomb efficiency than virginal Si nanoparticles. The SiO shell envelops the Si nanoparticles to suppress the aggregation of the nanoparticles during cycling. As a result, the core-shell Si/SiO nanocomposite exhibits better capacity retention than virginal Si nanoparticles, indicating that this is a promising approach to improve the electrochemical performance of nano anode materials for lithium ion battery.  相似文献   

18.
In this work, a novel 1,4-bis (4- aminophenylethynyl)benzene (OPE-NH2, a symmetric linear conjugated oligo(phenylene ethynylene)s derive) and chemically-reduced graphene oxide (rGO) nanocomposite (OPE-NH2/rGO) was synthesized by a simple self-assembly method. The OPE-NH2/rGO nanocomposite was stable and water soluble. The formation of OPE-NH2/rGO nanocomposite was ascribed to the π–π stacking interaction between the conjugated structure of OPE-NH2 and rGO as well as the electrostatic force between the amino group of OPE-NH2 and the carboxyl group on rGO, which was characterized by FT-IR, UV–vis spectra and fluorescence spectra. The OPE-NH2/rGO nanocomposite exhibited significantly improved electrocatalytic activity to the oxidization of dopamine (DA) than that of rGO or OPE-NH2. The electrochemical performances of OPE-NH2/rGO were dependent on the OPE-NH2 contents, and OPE-NH2 content of 5 wt% exhibited the highest activity. Compared with that of rGO, the nanocomposite presented superior high sensitivity with detection limit of 5 nM, excellent selectivity, wide linear range (0.01–60 μM) and good stability on the determination of DA. The practical application of the developed OPE-NH2/rGO nanocomposite modified electrode was successfully demonstrated for DA determination in human serum samples.  相似文献   

19.
Nanocomposites composed of cuprous oxide (Cu2O) and graphene were synthesized via reduction of copper(II) in ethylene glycol. This material possesses the specific features of both Cu2O and graphene. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from 0.1 to 10???M,with a detection limit of 10?nM (S/N?=?3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
Figure
Cu2O/Graphene nanocomposites were successfully prepared, Cu2O particles were uniformly distributed on transparent graphene and no particles scattered out of the supports. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear region, excellent selectivity and sensitivity to DA.  相似文献   

20.
Environmentally friendly water-based composite material has been investigated as a novel binder for manufacturing supercapacitor electrodes. The performance of these electrodes and those with the conventional polyvinylidene fluoride (PVDF) binder were studied. Results obtained from cyclic voltammetry, electrochemical impedance spectrometry, and charge/discharge measurements showed that the electrodes with the new binder performed significantly better than the electrodes with the conventional PVDF binder; the specific capacitance increased by 51 % in an aqueous electrolyte while in an organic electrolyte, it increased by 15 %. This increase in capacitance was attributed to the electrophilic and hydrophilic nature of the new binding composite. The main reason for the improvement in capacitance was ascribed to reduction of equivalent series resistance (ESR). The presence of highly amorphous polyvinylpyrrolidone (PVP), a polymeric component of the new composite binder, was responsible for the reduction in ESR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号