首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

2.
GeO_2–C fibers were successfully synthesized using electrospinning homogeneous sol and subsequent calcination in an inert atmosphere. The spinnable sol was prepared by adding polyacrylonitrile(PAN)and polyvinylpyrrolidone(PVP) in a weight ratio of 1:1 into a mixture with white precipitate produced by dropping GeCl_4 into DMF. X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),thermogravimetric analysis(TGA), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were employed to characterize the as-obtained fibers, and electrochemical tests were conducted to measure electrochemical performance of the electrode. The electrospun fibers have uniform diameters of 300 nm. After being calcined at 600 8C for 2 h in Ar, they transform to amorphous GeO_2–C fibers with the same morphologies. The Ge O_2–C fibers exhibit excellent cycling stability with a high reversible capacity of 838.93 m A h g~(-1)after 100 cycles at a current density of 50 m A g~(-1), indicating the composite fibers could be promising anode candidates for lithium-ion batteries.  相似文献   

3.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

4.
The electrochemical properties of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 have been investigated as part of a study of xLiMO2·(1−x)Li2MO3 electrode systems for lithium batteries in which M=Co, Ni, Mn and M=Ti, Zr, Mn. The data indicate that the electrochemically inactive Li2TiO3 component contributes to the stabilization of LiMn0.5Ni0.5O2 electrodes, which improves the coulombic efficiency of Li/xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 cells for x<1. The 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 electrodes provide a rechargeable capacity of approximately 175 mAh/g at 50 °C when cycled between 4.6 and 2.5 V; there is no indication of spinel formation during electrochemical cycling.  相似文献   

5.
Journal of Solid State Electrochemistry - Lithium-manganese-rich–lithiated nickel-manganese-cobalt oxides are advantageous for using in lithium-ion batteries due to low toxicity and high...  相似文献   

6.
Metal-oxygen systems are an attractive option to enhance the specific energy of secondary batteries. However, their power is limited by the oxygen electrode. In this communication we address the issue of the sluggish kinetics of the oxygen cathode in the aprotic Li–O2 batteries. The electrochemical performances of newly designed carbon electrodes coated with 50 Å thick Au layer are evaluated and compared with those of unmodified electrodes. Despite the low noble metal content (~ 2 wt.%), the Li–O2 batteries built with the abovementioned Au-coated cathodes show considerably enhanced kinetics as demonstrated by the higher onset potentials for the oxygen reduction reaction (~ 2.6 V at a current rate of 1000 mA g 1), together with reduced oxygen evolution potentials.  相似文献   

7.
Incorporation of reduced graphene oxide into β-Ni(OH)(2) presents high performances with specific discharge capacity of 283 mA hg(-1) after 50 cycles in Ni-MH batteries, and 507 mA hg(-1) after 30 cycles in Li ion batteries.  相似文献   

8.
9.
Pristine- and chromium-substituted LiNiO2 nanoparticles were synthesized by sol-gel method using nitrate precursor at 800?°C for 12?h. Physical properties of the synthesized product were analyzed using Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive analysis X-ray. XRD studies revealed a well-defined layer structure and a linear variation of lattice parameters with the addition of chromium and no impurities. Surface morphology and particle size of synthesized materials were changed with chromium addition using SEM and TEM analyses. Assembled lithium-ion cells were evaluated for charge/discharge studies at different rates, cyclic voltammetry, and electrochemical impedance spectra. The initial discharge capacity of LiNiO2 cathode material was found to be 168?mA hg?1; however, discharge capacity increased in chromium substitution. Electrochemical impedance spectroscopy revealed that LiCr0.10Ni0.90O2 could enhance charge transfer resistance upon cycling. The substitution of Ni with chromium, LiCr0.10Ni0.90O2, had better cycle life, low irreversible capacity, and excellent electrochemical performance.  相似文献   

10.
11.
A variety of MnO2 nanorods containing one or two transition metals (M) (with M?=?Al and/or Ni) have been successfully synthesised via a facile hydrothermal synthesis route. The physical–chemical properties and electrochemical performance of manganese oxide were analysed by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-OES), Fourier transform infrared spectrometer (FT-IR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller method (BET), galvanostatic discharge and cyclic voltammetry (CV). The result indicated that α-type MnO2 was obtained, and a small quantity of Al and/or Ni were embedded into the crystal lattice of manganese oxide instead of the partial Mn ion, which resulted in anisotropic expansion of the MnO2 unit cell. The doping of Al can strengthen Mn–O bonds in the [MnO6] octahedral and increases the specific surface area of the modified material (i.e., Al–MnO2 is 119 m2 g?1). Interestingly, MnO2 electrode co-doped with equimolar Al and Ni exhibited the highest specific capacity of 169 mAh g?1 at 0.05 mA cm?2. The substantial enhancement of the electrochemical lithium storage capacity was due to the ameliorating of integrative factors, such as high specific surface area, excellent lattice parameters and lower electrical resistance, as well as short Li+ and electron transport length. In addition, a more stable host skeleton also guaranteed an endurable Li+ intercalation behaviour during the discharge process.  相似文献   

12.
《Solid State Sciences》2004,6(9):923-929
Two new solid solutions—Li2xCa0.5−xTaO3 (0.05⩽x⩽0.25) and Li0.2[Ca1−ySry]0.4TaO3 (0<y⩽0.15)—based on the A defective ABO3 perovskite structural type, are synthesized. The crystal structures of these Li+ ion conducting compounds are solved from synchrotron radiation and conventional X-ray powder diffraction data. The unit cells exhibit a classical orthorhombic distortion of the cubic perovskite model (space group Pnma No. 62) with parameters close to 2ap, 2ap, 2ap (ap, primitive cubic cell parameter). The distortion of the cubic aristotype arises from the three tilts system a+bb of the TaO6 octahedra. For the same lithium content (x=0.10), the Sr2+ substitution to Ca2+ is found to enhance the electrical conductivity by quasi-one order of magnitude (at 200 °C, bulk dc conductivity values are close to 2.3×10−6 and 1.1×10−5 S cm−1 for Li0.2Ca0.4TaO3 and Li0.2[Ca0.9Sr0.1]0.4TaO3, respectively).  相似文献   

13.
One of the products of the reaction between Re3S7Br7 and PPh3 has been isolated in crystalline state and characterized by single crystal X-ray diffraction (XRD), mass-spectrometry, and EPR spectroscopy. The crystalline phase obtained is a co-crystallization product of two cluster complexes: [Re33-S)2(μ-S)2(μ-Br)Br3(PPh3)3] (1a) an [Re33-S)2(μ-S)(μ-Br)2Br3(PPh3)3] (1b). The ratio 1a:1b in the investigated single crystal sample is ~7:3.  相似文献   

14.
15.
Preparation, characterization by X-ray diffraction, IR absorption, DTA-GTA analysis and ab-initio crystal structure determination are reported for a new lithium cyclohexaphosphate hydrate Li6P6O18·3H2O. It crystallizes in a trigonal (rhomboedral) cell (space group R 3¯m No 166, Z = 6) with a = 15.7442(2) Å, c = 12.5486(2) Å. X-ray powder diffraction pattern data was refined by Rietveld profile technique and lead to RBragg = 0.09. The crystal structure of Li6P6O18·3H2O is built up from [P6O18]6- ring anions, having the 3m symmetry, alternating along the 3¯ axis with rings made of six LiO4 tetrahedra and six LiO5 pseudo square pyramids sharing common edges.  相似文献   

16.
Ti/IrO2(x) + MnO2(1-x) anodes have been fabricated by thermal decomposition of a mixed H2IrCl6 and Mn(NO3)2 hydrosolvent. Cyclic voltammetry (CV) and polarization curve have been utilized to investigate the electrochemical behavior and electrocatalytic activity of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution (pH = 2). Ti/IrO2+MnO2 anode with 70 mol% IrO2 content has the maximum value of q*, indicating that Ti/IrO2(0.7) + MnO2(0.3) anode has the most excellent electrocatalytic activity for the synchronal evolution of Cl2 and O2 in dilute NaCl solution. Tafel lines displayed two distinct linear regions with one of the slope close to 62 mV dec−1 in the low potential region and the other close to 295 mV dec−1 in the high potential region. Electrochemical impedance spectroscopic is employed to investigate the impedance behavior of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution. It is observed that as the R ct, R s and R f values for Ti/IrO2(0.7) + MnO2(0.3) anode become smaller, electrocatalytic activity of Ti/IrO2(0.7) + MnO2(0.3) anode becomes better than that of other Ti/IrO2 + MnO2 anodes with different compositions. Ti/IrO2(0.7) + MnO2(0.3) anode fabricated at 400 °C has been observed to possess the highest service life of 225 h, whereas the accelerated life test is carried out under the anodic current of 2 A cm−2 at the temperature of 50 °C in 0.5 M NaCl solution (pH = 2).  相似文献   

17.
《Solid State Sciences》2001,3(3):353-359
The synthesis and crystal structure of a novel hydrated magnesium phosphate is described. The crystal structure was solved from powder X-ray diffraction data. Mg3(PO4)2·4H2O crystallizes in the orthorhombic space group Cmc21 (No. 36) with a=8.41087(9) Å, b=17.3850(2) Å, c=12.8034(1) Å, V=1872.15(4) Å3 and Z=8. The structure consists of sheets stacked along [010], which are linked by edge sharing octahedral Mg2O6(H2O)4 dimers. Within the sheets there are infinite edge-sharing chains of Mg octahedra along [100]. The compound has been further characterized by 31P MAS NMR spectroscopy and thermogravimetric analysis. The crystal structure of two dehydrated variants existing around 200 (Mg3(PO4)2·2.5H2O) and 275 °C (Mg3(PO4)2·2H2O) remain unknown.  相似文献   

18.
We evaluated the spin-exchange interactions of Li(3)RuO(4) by performing energy-mapping analysis based on density functional calculations and examined the nature of its magnetic transition at T(1) = 66 K and the divergence of the field-cooled and zero-field-cooled susceptibilities below T(2) = 32 K. Our study shows that T(1) is associated with a three-dimensional antiferromagnetic ordering, in which the two-dimensional antiferromagnetic lattices parallel to the ab plane are antiferromagnetically coupled along the c direction. We examined how the substitutional defects, Ru atoms residing in the Li sites, affect the antiferromagnetic coupling along the c direction to explain why the expected c-axis doubling is not detected from powder neutron diffraction measurements. The susceptibility divergence below T(2) is attributed to a slight spin canting out of the ab plane.  相似文献   

19.
A hierarchical micro/nanostructured Li-rich layered 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 (H-LMNCO) material is prepared for the first time through the development of a solvothermal method, and served as cathode of lithium ion batteries. Electrochemical tests indicate that the H-LMNCO exhibits both a high reversible capacity and an excellent rate capability. The reversible discharge capacity of the H-LMNCO has been measured as high as 300.1 mAh·g 1 at 0.2 C rate. When the rate is increased to 10 C, the discharge capacity could still maintain a high value of 163.3 mAh·g 1. The results demonstrate that the developed solvothermal route is a novel synthesis strategy of preparing high rate performance Li-rich layered cathode material for lithium ion batteries.  相似文献   

20.
A series of Ti4+-doped Li9V3???x Ti x (P2O7)3(PO4)2/C compounds have been prepared by using wet method. X-ray diffraction measurement shows that single phase region can be expressed as x?≤?0.10. The effects of substitution of Ti for V on the electrochemical properties of Li9V3???x Ti x (P2O7)3(PO4)2 compounds have been studied. Our investigations show that Ti doping can improve the electrochemical performance. The Li9V2.95Ti0.05(P2O7)3(PO4)2/C exhibits the best cycle performance and the highest first discharge capacity of 120.7 mAh g?1 at 0.2 C. The electrochemical impedance spectroscopy indicates that the charge transfer resistance initially decreases with x and then for x?>?0.05 increases monotonically with Ti4+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号