首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
With one pair of entangled particles as the quantum channel, we present an explicit generalized protocol for perfectly teleporting a d-level N-particle GHZ state from a sender to a receiver. This protocol has the advantage of transmitting much less particles and classical information for teleporting the d-level N-particle GHZ state than others.  相似文献   

2.
3.
The mean-field density matrix of a changed plasma of quantum particles with Maxwell-Boltzmann statistics in a confining external potential is obtained as a limit of theN-body canonical states for suitably scaled charges. Also, it is shown that the density profile of the quantum mean-field theory converges to the solution of the classical mean-field equation when the Planck's constant tends to zero.  相似文献   

4.
Non perturbative analogues of the Gaussian effective potential (GEP) are defined for quantum oscillators obeyingq—or (q,p)—deformed commutation relations. These are called the non perturbativeq-effective potential (NP q EP) and the non perturbativeqp effective potential (NP qp EP), in the respective cases. A system-specific effective potential (SSEP) is also introduced by means of an additional minimization with respect to theq orq andp parameters. The method is applied toq and (q,p) oscillators of the quartic and sextic types. The SSEP in the case of ground states of theq-oscillators corresponds toq=1, which is the ordinary bosonic limit. A potential shape transition that involves the conversion of a double well to a single well or vice versa, is seen to exist in the case of quantum oscillators sitting in a double well potential.  相似文献   

5.
ABSTRACT

Nonlinear propagation of dust-ion-acoustic shock waves in an unmagnetized, collisionless four-component quantum plasma containing electrons, positrons, ions and negatively charged dust grains affected by dust charge variations and viscosity of ions is studied using quantum hydrodynamic model. Considering dust charge variation give rise to calculating of charging currents of the plasma particles. These currents have been calculated with orbit limited motion theory and using Fermi-distribution functions or Boltzmann–Maxwell distribution depending on quantum or classical particles, respectively. The basic characteristics of quantum dust-ion-acoustic shock waves are investigated by deriving Korteweg–de Vries–Burgers equation under the reductive perturbation method. Depending on the relative values of the dispersive and dissipative coefficients, oscillatory and monotonic shock waves can propagate in the plasma model. The effect of chemical potential and density of dust particles on the shock wave’s height and thickness is investigated. In addition, the critical value of H (Hc) is calculated and it is shown that for R?>?0 compressive shock waves and for R?<?0 rarefactive ones can exist. The present study is applicable to researchers on quantum nonlinear structures in dense astrophysical objects and ultra-small micro- and nano-electronic devices.  相似文献   

6.
We exhibit a phase transition from a rough high-temperature phase to a rigid (localized) low-temperature phase in the discrete Gaussian chain with 1/r 2 interaction energy. This transition is related to a localization transition in the ground state for a quantum mechanical particle in a one-dimensional periodic potential, coupled to quantum 1/f noise.This paper is dedicated to J. L. Lebowitz on the occasion of his 60th birthday  相似文献   

7.
S Chakrabarty 《Pramana》1984,23(2):199-203
For a large class of phenomenological potential models motivated by quantum chromodynamics, we have studied the behaviour of bound state masses as the constituent mass is increased and found that the mass of a quark-antiquark bound state increases when a constituent mass is increased. It appears, for these potentials, thatd quark is heavier thanu quark. An erratum to this article is available at .  相似文献   

8.
Ground-state properties of a two-dimensional quantum dot composed of N electrons and an impurity are investigated by the Thomas–Fermi (TF) method at T=0. The changes induced by the impurity in electron density, chemical potential and total energy are calculated. Calculations are also performed for different number of particles and strength of confinement. The results indicate that Thomas–Fermi approximation is applicable even when the system contains only a few particles.  相似文献   

9.
We suggest that quantum mechanics and gravity are intimately related. In particular, we investigate the quantum Hamilton–Jacobi equation in the case of two free particles and show that the quantum potential, which is attractive, may generate the gravitational potential. The investigation, related to the formulation of quantum mechanics based on the equivalence postulate, is based on the analysis of the reduced action. A consequence of this approach is that the quantum potential is always non-trivial even in the case of the free particle. It plays the role of intrinsic energy and may in fact be at the origin of fundamental interactions. We pursue this idea, by making a preliminary investigation of whether there exists a set of solutions for which the quantum potential can be expressed with a gravitational potential leading term which alone would remain in the limit 0. A number of questions are raised for further investigation.  相似文献   

10.
The electrostatic potential in a gravitational field is estimated up to the order ofe 2 G 2 in the framework of the conventional quantum field theory. It is shown that the electrostatic potential is different from the classical one. We find that this discrepancy is attributable to the process in which a particle emits three massless ones which are absorbed by three other particles.  相似文献   

11.
The purpose of this article is to discuss cluster expansions in dense quantum systems, as well as their interconnection with exchange cycles. We show in general how the Ursell operators of order l≥ 3 contribute to an exponential which corresponds to a mean-field energy involving the second operator U2, instead of the potential itself as usual - in other words, the mean-field correction is expressed in terms of a modification of a local Boltzmann equilibrium. In a first part, we consider classical statistical mechanics and recall the relation between the reducible part of the classical cluster integrals and the mean-field; we introduce an alternative method to obtain the linear density contribution to the mean-field, which is based on the notion of tree-diagrams and provides a preview of the subsequent quantum calculations. We then proceed to study quantum particles with Boltzmann statistics (distinguishable particles) and show that each Ursell operator Un with n≥ 3 contains a “tree-reducible part”, which groups naturally with U2 through a linear chain of binary interactions; this part contributes to the associated mean-field experienced by particles in the fluid. The irreducible part, on the other hand, corresponds to the effects associated with three (or more) particles interacting all together at the same time. We then show that the same algebra holds in the case of Fermi or Bose particles, and discuss physically the role of the exchange cycles, combined with interactions. Bose condensed systems are not considered at this stage. The similarities and differences between Boltzmann and quantum statistics are illustrated by this approach, in contrast with field theoretical or Green's functions methods, which do not allow a separate study of the role of quantum statistics and dynamics. Received 18 October 2001  相似文献   

12.
We propose new criteria to evaluate the average time spent by particles in a tunneling barrier. First we construct asojourn time, on the basis of statistical information provided by quantum mechanics, which seems to be an appropriate measure of the time spent byall particles within the barrier. A simple, stochastic treatment is then used to deal with the particles that actually traverse the barrier, in order to study their interaction time. The results obtained show that opaque barriers have important effects on the particlesbefore they enter the potential region, confirming previously published numerical findings. No arbitrarily high effective velocities appear anywhere in the present treatment.  相似文献   

13.
Zeeman splitting of the ground state of single impurities in the quantum wells of resonant tunneling heterostructures is reported. We determine the absolute magnitude of the effective magnetic spin splitting factorg* for a single impurity in a 44 Å Al0.27Ga0.73As/GaAs/Al0.27Ga0.73As quantum well to be 0.28±0.02. This system also allows for independent measurement of the electron tunneling rates through the two potential barriers and estimation of the occupation probability of the impurity state in the quantum well.  相似文献   

14.
Here we discuss two many-particle quantum systems, which are obtained by adding some nonhermitian but PT (i.e. combined parity and time reversal) invariant interaction to the Calogero model with and without confining potential. It is shown that the energy eigenvalues are real for both of these quantum systems. For the case of extended Calogero model with confining potential, we obtain discrete bound states satisfying generalised exclusion statistics. On the other hand, the extended Calogero model without confining term gives rise to scattering states with continuous spectrum. The scattering phase shift for this case is determined through the exchange statistics parameter. We find that, unlike the case of usual Calogero model, the exclusion and exchange statistics parameters differ from each other in the presence of PT invariant interaction.  相似文献   

15.
The resonant and non-resonant dynamies of a Gaussian quantum wave packet travelling through a double barrier system is studied as a function of the initial characteristics of the spectrum and of the parameters of the potential. The behaviour of the tunnelling time shows that there are situations where the Hartman effect occurs, while, when the resonances are dominant, and in particular for b>π/Δk (b being the inter-barrier distance and Δk the spectrum width), the tunnelling time becomes very large and the Hartman effect does not take place.  相似文献   

16.
A quantum particle observed on a sufficiently large space-time scale can be described by means of classical particle trajectories. The joint distribution for large-scale multiple-time position and momentum measurements on a nonrelativistic quantum particle moving freely inR v is given by straight-line trajectories with probabilities determined by the initial momentum-space wavefunction. For large-scale toroidal and rectangular regions the trajectories are geodesics. In a uniform gravitational field the trajectories are parabolas. A quantum counting process on free particles is also considered and shown to converge in the large-space-time limit to a classical counting process for particles with straight-line trajectories. If the quantum particle interacts weakly with its environment, the classical particle trajectories may undergo random jumps. In the random potential model considered here, the quantum particle evolves according to a reversible unitary one-parameter group describing elastic scattering off static randomly distributed impurities (a quantum Lorentz gas). In the large-space-time weak-coupling limit a classical stochastic process is obtained with probability one and describes a classical particle moving with constant speed in straight lines between random jumps in direction. The process depends only on the ensemble value of the covariance of the random field and not on the sample field. The probability density in phase space associated with the classical stochastic process satisfies the linear Boltzmann equation for the classical Lorentz gas, which, in the limith0, goes over to the linear Landau equation. Our study of the quantum Lorentz gas is based on a perturbative expansion and, as in other studies of this system, the series can be controlled only for small values of the rescaled time and for Gaussian random fields. The discussion of classical particle trajectories for nonrelativistic particles on a macroscopic spacetime scale applies also to relativistic particles. The problem of the spatial localization of a relativistic particle is avoided by observing the particle on a sufficiently large space-time scale.  相似文献   

17.
Computer simulation of a many-particle quantum system is bound to reach the inevitable limits of its ability as the system size increases. The primary reason for this is that the memory size used in a classical simulator grows polynomially whereas the Hilbert space of the quantum system does so exponentially. Replacing the classical simulator by a quantum simulator would be an effective method of surmounting this obstacle. The prevailing techniques for simulating quantum systems on a quantum computer have been developed for purposes of computing numerical algorithms designed to obtain approximate physical quantities of interest. The method suggested here requires no numerical algorithms; it is a direct isomorphic translation between a quantum simulator and the quantum system to be simulated. In the quantum simulator, physical parameters of the system, which are the fixed parameters of the simulated quantum system, are under the control of the experimenter. A method of simulating a model for high-temperature superconducting oxides, the tJ model, by optical control, as an example of such a quantum simulation, is presented.  相似文献   

18.
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory.  相似文献   

19.
We study the electronic properties of a quantum system formed by two charged particles moving in a quantum wire (QW) with finite width σ and interacting through a Coulomb potential under an uniform electric field E applied over a spatially confined region of thickness 2a (-a<z<a). The number of electronic states of this finite width system is twice the number of the less realistic system with σ=0.  相似文献   

20.
We investigate the h-deformed quantum (super)group of 2 × 2 matrices and use a kind of contraction procedure to prove that the n-th power of this deformed quantum (super)matrix is quantum (super)matrix with the deformation parameter nh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号