首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
This paper studies film effectiveness and heat transfer coefficients on a large scale symmetric circular leading edge with three rows of film holes. The film hole configuration focuses on a smaller injection angle of 20° and a larger hole pitch with respect to the hole diameter (P/d=7.86). The study includes four blowing ratios (M=1.0,1.5,2.0 and 2.5), two Reynolds numbers (Re=30,000 and 60,000), and two free stream turbulence levels (nominally Tu=1% and 20% depending on the Reynolds number). A transient liquid crystal (LC) image technique is employed to obtain the film effectiveness and heat transfer coefficient distributions with high spatial resolutions of 0.6 mm in both streamwise and spanwise directions. Results are presented for detailed and spanwise averaged values of film effectiveness and Frössling number. Turbulence intensity has an attenuation on film effectiveness as well as on Frössling number for all blowing ratios at Re=30,000. Under high turbulence conditions the film effectiveness and Frössling number increase as blowing ratio increases from 1.0 to 2.0 for both Reynolds numbers. Further increasing the blowing ratio results in reverse effect. Increasing the Reynolds number from 30,000 to 60,000 results in increases in both the film effectiveness and Frössling number at high turbulence except for M=2.5. The blowing ratio of two shows a spatial coupling of the stagnation row of film holes with the second row (21.5°) of film holes which results in the highest film effectiveness and also the highest Frössling numbers.  相似文献   

2.
This paper reports a computational investigation on the effects of mainstream turbulence intensity on film cooling effectiveness from trenched holes over a symmetrical blade. Computational solutions of the steady, Reynolds-Averaged Navier–Stokes equations are obtained using a finite volume method with k − ε Turbulence model. Whenever possible, computational results are compared with experimental ones from data found in the open literature. Computational results are presented for a row of 25° forward-diffused film hole within transverse slot injected at 35° to AGTB symmetrical blade. Four blowing ratios, M = 0.3, 0.5, 0.9 and 1.3 are studied together with four mainstream turbulence intensities of Tu = 0.5, 2, 4 and 10%. Results indicate that the trenched shaped holes tend to give better film cooling effectiveness than that obtained from discrete shaped holes for all blowing ratios and all turbulence intensities. The trenching of shaped holes has changed the optimum blowing ratio and also the location of re-attachment of separated jet at high blowing ratios. Moreover, it has been found that the effect of mainstream turbulence intensity for trenched shaped holes is similar to that obtained for discrete shaped holes with the exception that the sensitivity of film cooling effectiveness to turbulence intensity has decreased for trenched shaped holes.  相似文献   

3.
This paper presents a comparative numerical investigation on film cooling from a row of holes injected at 35° on a flat plate with three film cooling configurations, including cylindrical hole, 15° forward diffused shaped hole, and new crescent hole. All simulations are conducted at blowing ratio of 0.6 and 1.25, length-to-diameter ratio of four and pitch-to-diameter ratio of three. Computational solutions of the steady, Reynolds averaged Navier–Stokes equations are obtained using a finite volume method. Previous successful application of a two-layer turbulence model to cylindrical hole is extended to predict film cooling for the different hole geometries. It has been found that the film cooling effectiveness of cylindrical holes obviously declined along with increasing the blowing ratio. While the forward diffused shaped hole presents a marked improvement, with a higher effectiveness at the lateral area between adjacent holes. By comparison, the crescent hole exhibits the highest film cooling effectiveness among the three configurations both in spanwise and streamwise especially downstream of the intersection of the two holes. Also, the crescent hole can restrain the vortex intensity, and then enhance the film cooling effectiveness.  相似文献   

4.
The present study employs a transient liquid crystal thermography to measure film cooling performance over constant curvature of concave and convex surfaces. This work investigates detailed distributions of both film cooling effectiveness and heat transfer coefficient on concave and convex surfaces with one row of injection holes inclined stream-wise at 35° at four blowing ratios (0.5, 1.0, 1.5 and 2.0) on four test pieces with different hole configurations. All test models have a row of discrete holes with a stream-wise injection angle (γ of 35° and a pitch-to-diameter ratio (P/d) of 3. The current work examines four different injection configurations, one with simple and three with 8° forward-expanded holes. Three compound angles of 0, 45 and 90° with air (ρc/ρm = 0.98) as coolants are tested under the mainstream Reynolds number (Red) of 2300 on concave surface, and 1700 on convex surface. Measured results of the concave surface show that both the span-wise averaged heat transfer coefficient and film cooling effectiveness increase with blowing ratios for all tested models. Higher heat transfer levels induced by large flow disturbance of compound-angle injection also lead to poorer overall film cooling performance, especially at high blowing ratio and large span-wise injection angle. Present results show that the best surface protection on the concave surface over the widest range of M can be provided by the forward-expanded holes with β = 0° (Model-B), followed by the forward-expanded holes with β = 45° (Model-C). Convex surface results show that the compound-angle injection indicates increases in both film cooling effectiveness and heat transfer at moderate and high blowing ratios. The forward-expanded hole with simple-angle injection provides the best film performance because of high film cooling effectiveness and low heat transfer coefficient at blowing ratio of 0.5.  相似文献   

5.
 The film cooling performance on a convex surface subjected to zero and favourable pressure gradient free-stream flow was investigated. Adiabatic film cooling effectiveness values were obtained for five different injection geometries, three with cylindrical holes and two with shaped holes. Heat transfer coefficients were derived for selected injection configurations. CO2 was used as coolant to simulate density ratios between coolant and free-stream close to gas turbine engine conditions. The film cooling effectiveness results indicate a strong dependency on the free-stream Mach number level. Results obtained at the higher free-stream Mach number show for cylindrical holes generally and for shaped holes at moderate blowing rates significant higher film cooling effectiveness values compared to the lower free-stream Mach number data. Free-stream acceleration generally reduced adiabatic film cooling effectiveness relative to constant free-stream flow conditions. The different free-stream conditions investigated indicate no significant effects on the corresponding heat transfer increase due to film injection. The determined heat flux ratios or film cooling performance indicated that coolant injection with shaped film cooling holes is much more efficient than with cylindrical holes especially at higher blowing rates. Heat flux penalties can occur at high blowing rates when using cylindrical holes. Received on 29 May 2000  相似文献   

6.
The primary goal of this paper is to study film cooling performance for a cylindrical hole with plasma aerodynamic actuation. The simulation model of plasma aerodynamic actuation on improving film hole cooling effectiveness was established. The heat effect of plasma aerodynamic actuation model was taken into consideration. It was firstly found that the velocity and blowing ratio greatly affect the film cooling effectiveness. Then, position, power input, and the number of plasma actuators were particularly investigated.  相似文献   

7.
The present paper tests the capability of a standard Reynolds-Averaged Navier–Stokes (RANS) turbulence model for predicting the turbulent heat transfer in a generic trailing-edge situation with a cutback on the pressure side of the blade. The model investigated uses a gradient-diffusion assumption with a scalar turbulent-diffusivity and constant turbulent Prandtl number. High-fidelity Large-Eddy Simulations (LES) were performed for three blowing ratios to provide reliable target data and the mean velocity and eddy viscosity as input for the heat transfer model testing. Reasonably good agreement between the LES and recent experiments was achieved for mean flow and turbulence statistics. The LES yielded coherent structures which were analysed, in particular with respect to their effect on the turbulent heat transfer. For increasing blowing ratio, the LES replicated an also experimentally observed counter-intuitive decrease of the cooling effectiveness caused by the coherent structures becoming stronger. In contrast, the RANS turbulent heat transfer model failed in predicting this behaviour and yielded significantly too high cooling effectiveness. It is shown that the model cannot predict the strong upstream and wall-directed turbulent heat fluxes caused by large coherent structures, which were found to be responsible for the counter-intuitive decrease of the cooling effectiveness.  相似文献   

8.
9.
Numerical modelling of film cooling from converging slot-hole   总被引:1,自引:0,他引:1  
This paper presents a numerical prediction of a new 3D film cooling hole geometry, the converging slot-hole or console. The console geometry is designed in order to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems without loosing the mechanical strength of a row of discrete holes. The cross section of the console changes from a circular shape at the inlet to a slot at the exit. Previous successful application of a new anisotropic DNS based two-layer turbulence model to cylindrical and shaped hole injections is extended to predict film cooling for the new console geometry. The suitability of the proposed turbulence model for film cooling flow is validated by comparing the computed and the measured wall-temperature distributions of cylindrical hole injections. The result shows that the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. Comparative computations of the adiabatic film cooling effectiveness associated with the three geometries tested in the present study (cylindrical, shaped, and console) show that the new console film-cooling hole geometry is definitely superior to the other geometries as shown by the uniform lateral spreading of the effectiveness with a slight enhancement downstream of the intersection of the two consoles.  相似文献   

10.
Flow and heat transfer in the flat-plate boundary layer is numerically investigated using a differential three-equation turbulence model for the initial freestream turbulence intensity ranging from 1.5 to 9%. An increase in the local friction coefficient and the Stanton number obtained in the calculations is in agreement with the most representative experimental data.  相似文献   

11.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

12.
This paper describes the results of an experimental investigation into the film cooling effectiveness and heat transfer characteristics of two staggered injection rows of either a combination of one row of simple angle holes with another row of compound angle holes or with both rows of compound angle holes. The effect of using various injections holes arrangements as well as the relative location of the compound angle holes row to the simple angle holes row have been investigated for different blowing rates. Using combination of one row of downstream compound angle holes with another upstream simple injection holes row provides a significant increase in the film cooling protection over a flat plate surface, over that obtained from either two rows of only simple injections holes or compound angle holes. Received on 17 July 1998  相似文献   

13.
A numerical study was performed to evaluate the effectiveness of the novel sister hole film cooling technique. Two secondary coolant holes bound the primary coolant hole slightly downstream of its midpoint, intended to minimize the primary vortex pair and improve cooling performance. An unstructured hexahedral mesh was generated and the realizable kε turbulence model with near-wall modeling was used in these simulations. Blowing ratios of 0.2, 0.5, 1.0, and 1.5 were simulated to evaluate the applicability of sister holes in practical applications. It was found that sister holes significantly improved cooling performance over the entire computational domain, particularly at high blowing ratios. These results arose by countering the primary vortex pair with a secondary pair from these sister holes, ultimately maintaining flow adhesion where the coolant stream would have otherwise separated.  相似文献   

14.
The unsteady extrusion of a viscoelastic film from an annular and axisymmetric die is examined. External, elastic, viscous and inertia forces deform the film, which is simultaneously cooled via forced convection to the ambient air. This moving boundary problem is solved by mapping the liquid/air interfaces onto fixed ones and by employing a regular perturbation expansion for all the dependent variables. The ratio of the film thickness to its inner radius at the exit of the die is used as the small parameter in the perturbation expansion. The fluid mechanical aspects of the process depend on the Stokes, Deborah, Reynolds, and Capillary numbers. The heat transfer in the film and to the environment gives rise to four additional dimensionless groups: the Peclet, Biot and Brinkman numbers and the activation energy, which determines the temperature dependence of fluid viscosity and elasticity. A variable heat transfer coefficient is also considered. For typical fluid properties and process conditions, the Peclet number is very large. In this case it is the ratio of the Biot to the Peclet number, the Stanton number, which arises in the energy conservation equation. It is shown that film cooling becomes important when the Stanton number and/or the activation energy are in the high-end of their typical values. In such cases, the cooling of the parison leads to a more uniform flow and shape for the film. The influence on the process of a variable heat transfer coefficient and the Brinkman number is small. Received: 7 April 1999/Accepted: 10 August 1999  相似文献   

15.
Film cooling downstream of a model turbine blade trailing edge has been studied experimentally. High resolution particle image velocimetry was used to obtain spatially resolved mean velocity and turbulence measurements in the immediate vicinity of the trailing edge breakout. The mean velocity measurements imply the presence of a pair of counter-rotating longitudinal vortices shed from the sides of the breakout lands. The turbulent shear stress measurements above the breakout are significantly intensified as blowing ratio is increased. These results suggest that there is a strong mixing between the film cooling slot jets and the mainstream flow which degrades the film cooling effectiveness.  相似文献   

16.
Film cooling is a key technology for improving the thermal efficiency and power output of gas turbines. The trailing-edge section of high-pressure turbine blades can be efficiently cooled by ejecting a film over a cutback on the pressure side of the blade. In this paper, results of Large–Eddy Simulations (LES) are presented that match an existing experimental setup. Altogether, eight simulations with the blowing ratio M varying as the only parameter were performed over a range from M?=?0.35 to 1.4. Reasonably good agreement between LES and experiments were obtained for flow field statistics and adiabatic film-cooling effectiveness η aw. Within a limited range of blowing ratios, an increase in the blowing ratio results in a counter-intuitive decrease of the cooling effectiveness. The present work suggests a mechanism that can explain this behavior. The visualization and analysis of large coherent structures showed that there exists dominant clockwise-rotating structures that can give rise to a combined upstream- and wall-directed turbulent heat flux. This turbulent heat flux represents the main contribution of the total heat flux and causes a significantly intensified thermal mixing process, which in turn results in the counter-intuitive decrease of the cooling effectiveness.  相似文献   

17.
Two-phase CFD calculations, using a Lagrangian model and commercial code Fluent 6.2.16, were employed to calculate the gas and droplet flows and film cooling effectiveness with and without mist on a flat plate. Two different three dimensional geometries are generated and the effects of the geometrical shape, size of droplets, mist concentration in the coolant flow and temperature of mainstream flow for different blowing ratios are studied. A cylindrical and laterally diffused hole with a streamwise angle of 30° and spanwise angle of 0° are used. The diameter of film cooling (d) hole, and the hole length to diameter ratio (L/d) for both of geometries are 10 mm and 4, respectively. Also the blowing ratio ranges from 1.0 to 2.0, and the mainstream Reynolds number based on the mainstream velocity and hole diameter (Re d) is 6,219. The results are shown for different droplets diameters (1–10 μm), concentrations (1–5%) and mainstream temperatures (350–500 K). The centreline effectiveness and distribution of effectiveness on the surface of cooling wall are presented.  相似文献   

18.
Film cooling effectiveness from trenched shaped and compound holes   总被引:3,自引:0,他引:3  
This paper presents a comparative-numerical investigation on film cooling from a row of simple and compound-angle holes injected at 35° on a flat plate with four film cooling configurations: (1) cylindrical film hole; (2) 15° forward diffused film hole; (3) trenched cylindrical film hole; (4) trenched 15° forward-diffused film hole. All simulations are at fixed density ratio of 1.6, blowing ratio of 1.25, length-to-diameter L/D = 4 and pitch-to-diameter ratio of 3.0. The effect of length-to-diameter ratio on film cooling has been also investigated using L/D in the range of 1–8. Computational solutions of the steady, Reynolds-averaged Navier–Stokes equations have been obtained using a finite volume method. It has been found that the shape of the hole and the trenched holes can significantly affect the film cooling flow over the protected surface. Further, it has been shown that the film cooling effectiveness by trenched shaped holes is higher than all other configurations both in spanwise and streamwise specially downstream of the injection. Also, a trenched compound angle injection shaped hole produces much higher film cooling protection than the other configurations investigated in the present paper. The length-to-diameter ratio of trenched holes was found to have a significant effect on film cooling effectiveness and the spread of the coolant jets.  相似文献   

19.
This work presents the numerical study of a film‐cooled blade under the influence of wake passing at different incidence angles. The film cooling technology has been proven to be effective to increase the blade life of first turbine stages. However, the leading edge is affected by an high heat transfer rate and cooling this region is difficult. Moreover, separated regions downstream the coolant injection increases the local heat transfer coefficient and can have a detrimental effect in terms of airfoil life. This work analyses how the flow field is affected by the wake passing at different incidence angles (?5, 0, 5) and the impact on heat transfer coefficient. The test case is a linear cascade with two rows of cylindrical holes at the leading edge. Two different holes arrangements are compared in terms of film cooling structures, namely AGTB‐B1 and AGTB‐B2 with 0 and 45° spanwise inclination. The numerical results show a good agreement with the experiments. A deeper investigation is carried out on AGTB‐B1. The results obtained show that the wake passing and the incidence angle have a strong effect on coolant jets. In particular, there is a significative impact on coolant redistribution near the leading edge. The wake passing has a stronger effect on pressure side, mainly at negative incidence. The predictive approach is based on an U‐RANS in‐house CFD solver using a conventional two‐equations closure. In order to avoid extra turbulence production, critical in the leading edge region, the turbulence model incorporates an extra algebraic equation that enforces a realizability constraint. The unsteady formulation is based on a dual time stepping approach with a sliding plane between the moving bars and the cascade. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper discussed a method of combining a full automatic multi-objective optimization and conjugate heat transfer calculation to obtain optimal cooling layouts on a transonic high pressure guide vane under a realistic turbine working condition. The improvement in cooling design from the optimized models was analyzed in detail, along with a discussion of sensitivities of two objective functions to five design variables. The full automatic method comprises the process of geometry creation, mesh generation, numerical solution and post data analysis. The vane is solid and the end-wall is arranged in a linear cascade. On the end-wall, film holes are all cylindrical and classified in five regions, with region A near the leading edge of the vane, region B near the suction side, regions C and D near the pressure side, and region E for the rest. Five design variables are three pitch-to-hole ratios in regions B, D, E and two compound angles of film holes in regions A and D. Two selected objective functions are area averaged overall cooling effectiveness of the end-wall and aerodynamic losses in a cross-plane at x/Cax = 1.06 just downstream of the outlet of the cascade. For the optimization process, the multi-objective genetic algorithm based on the Non-dominated Sorted Genetic Algorithm-II was applied. The Latin hypercube sampling method was used to choose 21 experimental design points in the design space, which are also the sources for constructing the surrogate models with the Kriging model. The results demonstrate that the method using full automatic optimization and conjugate heat transfer calculation has achieved an increase of 8.7%–9.5% in area-averaged overall cooling effectiveness and a reduction of about 4.8%–6.1% in aerodynamic losses. The highest increase in cooling effectiveness exists in the region near the pressure side with a mild increase in the middle of the passage. The largest heat flux reduction exists in the regions near the pressure side and the crown of the suction side. The change of compound angle in region A near the leading edge has a negligible influence on overall cooling effectiveness but a high impact on aerodynamic losses. It's advisable to maintain the compound angle and pitch-to-diameter ratio at low values in region D near the pressure side to obtain high cooling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号