共查询到17条相似文献,搜索用时 62 毫秒
1.
微晶酚酞预富集-分光光度法测定痕量Co(Ⅱ) 总被引:1,自引:0,他引:1
建立了一种以微晶酚酞作为固态吸附剂对样品中痕量的Co(Ⅱ)分离富集的新方法,富集后的co(Ⅱ)可直接用光度法测定。控制一定条件,Co(Ⅱ)能与常见阳离子Ni(Ⅱ)、Cd(Ⅱ)、Al(Ⅲ)、Ca(Ⅱ)、Mg(Ⅱ)、Pb(Ⅱ)、Mn(Ⅱ)、Fe(Ⅲ)、Bi(Ⅲ)等完全分离,且富集时基本不受SO4^2-、NO3^-、Br^-、Cl^-、I^-等阴离子影响。微晶酚酞对Co(Ⅱ)的吸附容量为23.5mg/g;富集因数可达200倍,回收率在97.6%以上,RSD为1.1%~2.3%。已用于环境水样及日常用水中Co(Ⅱ)的富集测定。 相似文献
2.
建立了利用无毒的微晶酚酞作为固相萃取剂分离富集溶液中痕量Tl(Ⅲ)的方法。在H3PO4介质中,Tl(Ⅲ)在水相中与I-和结晶紫(CV+)形成离子缔合物而被微晶酚酞定量吸附,富集后的Tl(Ⅲ)可直接用光度法测定。控制一定的条件,Tl(Ⅲ)能与常见离子Na+,K+,Al3+,Cu2+,Pb2+,Zn2+,Ba2+,Mn2+,Ca2+,Cd2+,Fe2+等完全分离,且基本不受Cl-,Br-,SO42-,NO3-等阴离子的影响。方法可直接应用于环境水样中痕量Tl3+的测定,富集倍数可达100倍,回收率95.6%~101.8%,检出限为13 ng/L。 相似文献
3.
建立了以修饰有甲基紫(MV)的微晶酚酞作为固相吸附剂分离富集和测定环境样品中痕量Bi(Ⅲ)的新方法.研究表明,Bi(Ⅲ)与I-、 MV 形成三元离子缔合物[BiI6] (MV)3能定量吸附在微晶酚酞上,在适当条件下,Bi(Ⅲ)能与Co(Ⅱ)、 Ni(Ⅱ)、 Mn(Ⅱ)、 Fe(Ⅱ)、 Al(Ⅲ)、 Zn(Ⅱ)等常见阳离子分离,且基本不受Br-、 SCN-、 SO42-、 NO3-、 Cl-、 ClO4-等阴离子影响.Bi(Ⅲ)的静态吸附容量为0.81 mmol/g,富集因数可达200倍,回收率在97.2%以上,RSD 1.3%~2.2%之间.已应用于环境水样中Bi(Ⅲ)的测定. 相似文献
4.
负载乙基紫的微晶酚酞吸附富集-分光光度法测定水中痕量钒 总被引:2,自引:0,他引:2
建立了以微晶酚酞作为吸附剂分离富集环境水样中痕量钒的新方法。研究表明,当pH值在3.7~7.0时,溶液中以V3O39-存在形式为主的钒,与乙基紫阳离子(EV )形成的离子缔合物(V3O93-).(EV )3能被微晶酚酞定量吸附,在钒被富集的同时并能使其与常见阳离子Co(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)、Cd(Ⅱ)、Al(Ⅲ)、Cu(Ⅱ)、Hg(Ⅱ)、Pb(Ⅱ)、Mn(Ⅱ)、Fe(Ⅲ)、Cr(Ⅲ)等完全分离,且基本不受能与EV 形成离子缔合物的阴离子SO24-、NO3-、Br-、Cl-、I-、ClO4-的影响。分别在1.0L不同环境水样中加入5.00mL1.0×10-3mol/LEV 及1.0mL0.10mol/LHCl(调溶液pH值约为4.0)和5.00mL15.8%的酚酞乙醇溶液,搅拌约50min,能够使水样中的痕量钒得到很好的富集。富集因数达100~200倍,回收率在98.0%以上,RSD为1.1%~2.3%。 相似文献
5.
建立了一种利用修饰有结晶紫(CV+)的微晶酚酞作为固态吸附剂分离富集溶液中痕量Zn(II)的新方法, 富集后的Zn(II)含量可直接用光度法测定. 控制一定条件, Zn(II)能与常见阳离子Ni(II), Cd(II), Al(III), Ca(II), Mg(II), Co(II), Mn(II), Cu(II), Pb(II), Fe(III)等完全分离, 且富集时基本不受, , Br-, Cl-, I-,等阴离子影响. 微晶酚酞对Zn(II)的吸附容量为25.8 mg/g; 富集因数可达200倍, 回收率在97.7%~102%之间, RSD小于2.7%. 该方法已成功应用于实际水样中Zn(II)的富集测定, 结果令人满意. 相似文献
6.
建立了一种利用修饰有结晶紫(CV+)的微晶酚酞作为固态吸附剂分离富集溶液中痕量Zn(II)的新方法, 富集后的Zn(II)含量可直接用光度法测定. 控制一定条件, Zn(II)能与常见阳离子Ni(II), Cd(II), Al(III), Ca(II), Mg(II), Co(II), Mn(II), Cu(II), Pb(II), Fe(III)等完全分离, 且富集时基本不受, , Br-, Cl-, I-,等阴离子影响. 微晶酚酞对Zn(II)的吸附容量为25.8 mg/g; 富集因数可达200倍, 回收率在97.7%~102%之间, RSD小于2.7%. 该方法已成功应用于实际水样中Zn(II)的富集测定, 结果令人满意. 相似文献
7.
8.
研究了在丙醇-水体系中加入表面活性剂乙基紫(EV)后,影响Cd2 分离的酸度、无机盐、卤离子种类等条件。实验表明,(NH4)2SO4存在下,无表面活性剂EV,一定量的I-,在酸性条件下,Cd2 的萃取率为68%,而同样条件下,加入mg级表面活性剂EV后,Cd2 与EV、г形成三元缔合物,被均相萃取、异相分离;缔合物进入丙醇相,Cd2 被完全萃取分离;在pH 1.0时,试验了Cd2 加入量为5μg/mL时与Fe3 、Co2 、Ni2 、Zn2 、Mn2 、Zn2 、Cr3 的二元或多元离子混合液的分离试验,分离完全。 相似文献
9.
10.
碘化钾-乙基紫-水体系固相浮选分离镉的研究 总被引:4,自引:0,他引:4
研究了碘化钾 乙基紫 水体系固相浮选分离镉的行为及与常见金属离子分离的最佳条件。试验表明,将碘化钾溶液、乙基紫溶液和盐酸溶液混合稀释,生成稳定的CdI2-4·(EV+)2三元缔合物可很快浮于水相,使Cd(Ⅱ)被定量浮选。控制适当条件,可实现Cd(Ⅱ)与常见金属离子Mn(Ⅱ)、Al(Ⅲ)、Ni(Ⅱ)、Zn(Ⅱ)之间的分离。对合成水样进行了浮选分离测定,结果满意。 相似文献
11.
《Analytical letters》2012,45(12):1987-1998
Abstract The present work describes a novel method for cadmium preconcentration and separation with microcrystalline phenolphthalein. Phenolphthalein as an extractant modified by crystal violet was originally applied to cadmium extraction from aqueous solution. Cadmium(II) as CdI3 ? and CdI4 2? can associate with the cationic crystal violet (CV+) forming water‐insoluble ion‐association complexes (CdI3 ?) · (CV+) and (CdI4 2?) · (CV+)2, which are quantitatively adsorbed on microcrystalline phenolphthalein over the pH range from 1.0 to 6.0. All experimental parameters necessary for successful preconcentration and separation have been investigated and optimized. The study shows that common metal ions, such as Zn(II), Fe(II), Co(II), Ni(II), Mn(II), Cr(III) and Al(III), cannot interfere with cadmium extraction in this microcrystalline system by controlling acidity. The extraction can be accomplished in 15 min. The interaction between CdI3 ?and CdI4 2? and CV+ plays an important role in the extraction process. The reported method was successfully applied to the preconcentration and separation of cadmium in synthetic samples and real samples with satisfactory results. The results proved that it is an efficient and attractive technique for cadmium preconcentration and separation at trace level. 相似文献
12.
13.
The separation behavior of mercury by a flotation system consisting of ammonium sulfate, ammonium thiocyanate and ethyl violet, and the conditions for the separation of Hg(II) with other common metal ions have been studied. The studies show that in aqueous solutions, Hg(II) combines with NH4SCN and ethyl violet(EV) into dissoluble ternary ion‐association complex [Hg(SCN)42?]?(EV)2. In the presence of ammonium sulfate, the precipitate is floats well on the surface of the water phase and separates from water thoroughly. It shows that Hg(II) can be separated completely from Cd(II), Fe(II), Co(II), Ni(II), Mn(II) and Al(III) by flotation at pH1.0. The flotation mechanism of Hg(II) is described in this paper. 相似文献
14.
硫酸铵存在下碘化物—结晶紫—丙醇体系萃取分离镉 总被引:37,自引:3,他引:37
研究了硫酸铵存在下,碘化物-结晶紫-丙醇体系萃取镉的行为以及丙醇水溶液的分相条件,试验表明,丙醇作为萃取溶剂,能萃取中性离子缔合物,调节溶液pH=1.0或pH=4.0,该体系使能Cd^2+,从常见过渡元素Fe^3+,Co^2+,Ni^2+,Mn^2+,Zn^2+,Cr^3+的混合液中分离出来。 相似文献
15.
The paper presents a novel method for the separation/enrichment of trace Ni2+ using microcrystalline phenolphthalein loaded with chelate prior to the determination by spectrophotometry. The effects of different parameters, such as the dosages of phenolphthalein and sodium diethyldithiocarbamate (DDTC), various salts and acidity on the enrichment yield of Ni2+ have been investigated to select the experimental conditions. The possible enrichment mechanism of Ni2+ was discussed. The results showed that under the optimum conditions, Ni2+ could be quantificationally adsorbed on the surface of microcrystalline phenolphthalein in the form of the chelate precipitate of Ni(DDTC)2, while K+, Na+, Ca2+, Mg2+, Zn2+, Fe2+, Al2+, Pb2+ and Cd2+ could not be adsorbed at all. Therefore, Ni2+ was completely separated from the above metal ions in the solution. A new method for the separation/enrichment and determination of trace nickel using microcrystalline phenolphthalein loaded with chelate was established. The proposed method has been successfully applied to the determination of Ni2+ in various water samples, and the results agreed well with those obtained by FAAS method. 相似文献
16.
A new method for cadmium separation and concentration with microcrystalline phenolphthalein modified by crystal violet (CV) was developed in the paper. In the presence of potassium iodide (KI) and CV, cadmium are quantitatively absorbed on microcrystalline phenolphthalein in the pH range 1.0-6.0 as the forms of water-insoluble ion-associated complexes (CdI3−)·(CV+) and (CdI42−)·(CV+)2. Effect of different parameters such as phenolphthalein amount, stirring time, the concentration of CV and KI, various salts and metal ions was studied in detail. During the present study, a significant enhancement of the extraction of cadmium was observed. Cd(II) can be completely separated from Zn(II), Fe(II), Co(II), Ni(II), Mn(II), Cr(III) and Al(III) in this microcrystalline system and well concentrated without the interference of these metal ions at high level. The possible reactive mechanism of cadmium concentration has been discussed. Analytical results obtained by this new method were very gratifying. 相似文献
17.