首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article reviews the use of polyethylene glycol (PEG) or polyoxyethylene (POE) as the stationary phase for the separation of inorganic anions in ion chromatography and discusses about the retention mechanisms involved in the separation of anions on the novel stationary phases. PEG permanently coated on a hydrophobic stationary phase retained anions in the partition mode and allowed us to use high-concentration eluents because the retention of anions increased with increasing eluent concentration for most of the eluents. This situation was convenient to determine trace anions contained in seawater samples without any disturbance due to matrices. Chemically bonded POE stationary phases retained not only anions but also cations. Anions were retained in the ion-exchange mode, although POE chains possess no ion exchange sites. The retention behavior suggested that eluent cations could be trapped among multiple POE chains via ion-dipole interaction, and that the trapped cations worked as the anion-exchange sites. Anions could be separated using crown ether, i.e., cyclic POE, as the eluent additive with a hydrophobic stationary phase, where analyte anions were retained via electrostatic interaction with the eluent cation trapped on the crown ether.  相似文献   

2.
The application of ion-exchange fibers as the stationary phase in ion chromatography for the separation of inorganic anions has been studied. Results indicate that a separator column packed with VS-2 anion-exchange fibers and a suppressor column packed with VS-1 cation-exchange fibers have a similar separation efficiency to small-particle resin columns, but that the column pressure drop (ΔP) in fiber columns in only one-tenth of that in resin columns, at the same flow-rate. This allows the separation to be performed efficiently at a higher flow-rate and with lower presure, as shown for the separation of an anion mixture.  相似文献   

3.
A new ion chromatographic (IC) system, in which n-tetradecylphosphocholine (TDPC, a phosphobetaine type of zwitterionic surfactant) was used as the stationary phase, pure water as the mobile phase, and conductivity as the method of detection, has been developed for the determination of inorganic acids. Five model acids, HCl, HNO3, HClO4, H2SO4, and H3PO4, were separated to baseline and eluted in the order H3PO4 > HCl > HNO3 > H2SO4 > HClO4. When peak areas were plotted against the concentrations of the acids in samples, linear calibration curves were obtained. Ultimate determination limits were approximately 1 mmol L–1, but the discrimination of the method between solutions of different concentration was better than 10 μmol L–1 for those model analytes. Salts of divalent cations could also be separated, but they were eluted faster than the acids. No separation was observed for the salts of monovalent cations. This newly proposed approach is applicable to the simultaneous determination of the inorganic acids (produced by reactions of NOx, SOx, and HCl with water) in aerosols.  相似文献   

4.
A new ion chromatographic (IC) system, in which n-tetradecylphosphocholine (TDPC, a phosphobetaine type of zwitterionic surfactant) was used as the stationary phase, pure water as the mobile phase, and conductivity as the method of detection, has been developed for the determination of inorganic acids. Five model acids, HCl, HNO3, HClO4, H2SO4, and H3PO4, were separated to baseline and eluted in the order H3PO4 > HCl > HNO3 > H2SO4 > HClO4. When peak areas were plotted against the concentrations of the acids in samples, linear calibration curves were obtained. Ultimate determination limits were approximately 1 mmol L(-1), but the discrimination of the method between solutions of different concentration was better than 10 micromol L(-1) for those model analytes. Salts of divalent cations could also be separated, but they were eluted faster than the acids. No separation was observed for the salts of monovalent cations. This newly proposed approach is applicable to the simultaneous determination of the inorganic acids (produced by reactions of NOx, SOx, and HCl with water) in aerosols.  相似文献   

5.
Several aliphatic ionenes (2-6-, 6-6-, 10-6-ionene) have been prepared as ion exchangers for the development of novel high-performance stationary phases for anion chromatography (IC). A macroporous polystyrene/divinylbenzene (PS/DVB) resin with adjusted cation exchange capacity was used as support. Therefore the immobilization of ionenes to polystyrene carriers with remaining positive surface charge became possible for the first time. Strong ion-exchange interactions, resulting in high retention times, between the stationary phase and inorganic as well as organic anionic analytes have been observed. The influence of different ionenes on the retention behaviour during the ion chromatographic separation was investigated. Additionally, partly aromatic and polar ionene backbones were prepared and their retention behaviour as anion exchanger was investigated. The highest number of theoretical plates obtained was about 90.000 per meter. The signal asymmetries were generally lower than obtained for surface functionalized anion exchangers.  相似文献   

6.
A carboxybetaine-type zwitterionic stationary phase obtained by immobilizing Mitsubishi Reagent EF-700 (C(8)F(17)SO(2)NHC(3)H(6)N(+) (CH(3))(2)-C(2)H(4)-COO(-)) onto a reversed-phase column was used for chromatographic separation of ions. When aqueous electrolyte solutions having higher pH values (>8) were used as eluents, the model analyte ions (NO(2)(-), H(2)PO(4)(-), Cl(-), Br(-), NO(3)(-), ClO(3)(-), I(-) and SCN(-)) were co-eluted and appeared at the void volume of this HPLC system. However, when aqueous electrolyte solutions having lower pH values (<5.5) were used as eluents, these anions were well retained and separated. Furthermore, when acetate buffers (NaAc/HAc) were used as eluents, plots of log k' (k', retention factor) versus pH of eluents (at constant [NaAc+HAc]), and log k' versus log [NaAc+HAc] (at constant pH), were linear with negative slopes. Breakthrough curves for acid solutions obtained using conductivity detection showed that H(+) ions and their conjugate anions were both retained on the stationary phase and the degree of binding was found to be independent of the acid species used. The degree to which the eluent cation was bound onto the carboxylate functionality of the zwitterion was found to exert a major effect on the retention of analyte anions. A strongly bound cation, such as H(+), reduced electrostatic repulsion effects exerted by the carboxylate functionality on analyte anions, so that they could freely access the quaternary ammonium sites on the zwitterion. It is concluded based on these experimental results that both the charges on the zwitterionic stationary phase make meaningful contributions to the separation of the analyte ions.  相似文献   

7.
Summary A pure silica gel (Pia Seed 5S-60-SIL), synthesized by the hydrolysis of pure tetraethoxysilane [Si(OCH2CH3)4], was applied as a cation-exchange stationary phase in ion chromatography with indirect photometric detection for common mono-and divalent cations (Li+, Na+, NH4 +, K+, Mg2+, and Ca2+) using various protonated aromatic monoamines (tyramine [4-(2-aminethyl) phenol], benzylamine, phenylethylamine, 2-methylpyridine and 2,6-dimethylpyridine) as eluet ions. When using 0.75 mM tyramine-0.25 mM oxalic acid-1.5 mM 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) at pH 5.0 as the eluent, excellent simultaneous separation and highly sensitive detection at 275 nm for these mono-and divalent cations were achieved on the Pia Seed 5S-60-SIL column (150×4.6 mm I.D.) in 20 min.  相似文献   

8.
The method for analysis of inorganic cations in brine solutions was developed. Ion chromatography is a well-established and accepted technique in the determination of a variety of inorganic ions. However, there are significant complications when ion chromatography is used to determine trace concentrations of inorganic ions in brine matrices. The brine solution in our study was made to simulate the solution from the Waste Isolation Pilot Plant. Instrumental parameters such as eluent composition, flow-rates, and sample loop volumes were investigated to arrive at the optimum condition for the determination of the cations with minimal dilution. Separation was carried out in a Dionex CG12A/CS12A with 8.25 mM H2SO4 as eluent at 1.2 ml/min flow-rate. Our results indicated that ion chromatography is an accurate and a good alternative method for the analysis of cations in brine solution.  相似文献   

9.
Spectroscopic techniques both in steady-state (in absorption and emission) and pulsed (absorption of excited states with femtosecond resolution) conditions were used to study the complexation process between six molecules belonging to the tetracycline family and Mg(2+); in the case of TC the study was extended to the metal ions Ca(2+) and Cu(2+). The study was carried out in aqueous solution at various pH values, where one acid-base form of the substrate prevails over the others. The processing of experimental results, performed by means of Singular Value Decomposition and Global Analysis methods, allowed us to evaluate the extent of interaction through the association constants, to identify the number of equilibria present in solution and the stoichiometry (1:1 or 1:2) of the tetracycline:metal ion complex, and to define the spectral and photophysical properties of the latter (in terms of fluorescence quantum yields, lifetimes and rate constants). In fact, the (allowed) radiative decay process is a minor root for the lowest excited state of the complexes which mainly decay to the ground state by internal conversion. Details of the complexation sites are proposed for the various protonated forms of tetracyclines, and for the various cations in the case of TC. In particular, the molecular structure seems to affect significantly the dynamics of interaction when the upper peripheral region of tetracycline is rich in additional hydroxyl groups. Moreover, the state of protonation of the substrate produces changes in the order of the complexation sites, whose affinity for the cation increases significantly when they are negatively charged owing to the loss of protons. Magnesium and calcium (hard cations) give similar interactions, at least in acid solution, while copper(ii) (borderline cation) binds more efficiently on different sites, thus forming complexes with different properties.  相似文献   

10.
A hybrid monolithic column with sulfonate functionality was successfully prepared for the simultaneous separation of common inorganic cations in ion‐exchange chromatographic mode through a simple and easy single‐step preparation method. The strong cation‐exchange moieties were provided directly from allylsulfonate, which worked as an organic monomer in the single‐step reaction. Inorganic cations (Li+, Na+, K+, NH4+, Cs+, Rb+, Mg2+, Ca2+, and Sr2+) were separated satisfactorily by using CuSO4 as the eluent with indirect UV detection. The allysulfonate hybrid monolith showed a better performance in terms of speed and pressure drop than the capillary packed column. The number of theoretical plates achieved was 19 017 plates/m (in the case of NH4+ as the analyte). The relative standard deviations (n = 6) of both retention time and peak height were less than 1.96% for all the analyte cations. The allysulfonate hybrid monolithic column was successfully applied for the rapid and simultaneous separation of inorganic cations in groundwater and the effluent of onsite domestic wastewater treatment system.  相似文献   

11.
A vitamin U-bonded stationary phase was prepared and the retention behavior of inorganic anions was examined using ion chromatography. Inorganic anions were retained on the vitamin U-bonded stationary phase under acidic as well as neutral eluent conditions in the ion-exchange mode. The elution order of the examined anions under neutral eluent conditions was nearly the same as that observed in common ion exchange mode, while the elution order observed under acidic eluent conditions was completely different from that observed in common ion exchange mode. The retention of the analyte anions under the neutral eluent conditions was due to the sulfonium groups of the vitamin U, while protonated primary amino groups caused retention of the analyte anions with different selectivity under acidic conditions. The retention factor of the analyte anions increased with decreasing eluent concentration under both eluent conditions. The present system was applied to the determination of bromide and nitrate contained in seawater.  相似文献   

12.
An ion chromatographic method for the rapid and direct determination of iodide in seawater is reported. Poly(ethylene glycol) (PEG) groups were chemically bonded onto silica gel or C30-bonded silica gel via diol groups. PEG-bonded C30 binary phases allowed determination of iodide in seawater samples without any interference. Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention of analyte anions. The retention time of anions increased with increasing eluent concentration. The detection limit for iodide obtained by injecting 0.2 microl of sample was 13 microg l(-1) (S/N=3) while the limit of quantitation was 43 microg l(-1) (S/N=10). The present method was successfully applied to the rapid and direct determination of iodide in seawater with long-term durability.  相似文献   

13.
An ion chromatography (IC) method has been proposed for the determination of seven common inorganic anions (F(-), H(2)PO(4)(-), NO(2)(-), Cl(-), Br(-), NO(3)(-), and SO(4)(2-)) and/or five common inorganic cations (Na(+), NH(4)(+), K(+), Mg(2+), and Ca(2+)) using a single pump, a single eluent and a single detector. The present system used cation-exchange and anion-exchange columns connected in series via a single 10-port switching valve. The 10-port valve was switched for the separation of either cations or anions in a single chromatographic run. When 1.0mM trimellitic acid (pH 2.94) was used as the eluent, the seven anions and the five cations could be separated on the anion-exchange column and the cation-exchange column, respectively. The elution order was found to be F(-)相似文献   

14.
柠檬酸试剂中痕量无机阴阳离子的离子色谱法测定   总被引:5,自引:0,他引:5  
选用柱容量较高、亲水性较强的阴离子分析柱IonPac AS18,以30mmol/L KOH为淋洗液,等度淋洗分析了高浓度柠檬酸中的痕量无机阴离子。选用柱容量较高的阳离子分析柱IonPac CS12A,以H2SO4作淋洗液分析了柠檬酸试剂中的痕量阳离子。在所选色谱条件下,无需样品前处理,直接进样,电导检测,高浓度柠檬酸不影响痕量阴离子或阳离子的测定。方法具有良好的线性(r=0.9941~1.000),样品中所测离子峰面积的相对标准偏差(RSD)均在9.0%以下(n=7),回收率在82.7%~110%之间,检出限低于3.7μg/L。  相似文献   

15.
An ion chromatographic (IC) method has been developed for determination of hydrogen ion (H+). It is based on the use of sulfonated cation-exchange resin as stationary phase, aqueous ethylenediamine-N,N,N',N'-tetraacetic acid (dipotassium salt, EDTA-2K, written as K2H2Y) solution as mobile phase, and conductivity for detection. H+ was separated mainly by cation-exchange, but its elution was accelerated by the presence of EDTA. The order of elution for the model cations was H+ > Li+ > Na+ > NH4+ > Ca2+ > > Mg2+. A sharp and highly symmetrical peak was obtained for H+ and this was attributed to the capacity of H2Y2(2-) to receive and bind H+. H+ was detected conductiometrically and detector response (reduction in conductivity as a result of H+ +H2Y2- --> H3Y-) was linearly proportional to the concentration of H+ in the sample. The detection limit for H+ with this IC system was better than 4.7 micromol L(-1). A significant advantage of this method was the ability to separate and determine, in one step, H+ and other cations. The successful determination of H+ and other cation species in real acid-rain samples demonstrated the usefulness of this method.  相似文献   

16.
17.
The inability to separate fluoride, phosphate and sulfate by electrostatic ion chromatography (EIC) was overcome by using an ODS silica column coated with mixed zwitterionic-cationic surfactants as the stationary phase. The best results were obtained using the zwitterionic surfactant, 3-(N,N-dimethylmyristylammonium)-propanesulfonate (C19H41NO3S), and the cationic surfactant, myristyltrimethylammonium, CH3(CH2)13N+(CH3)3, in a 10:1 molar ratio in the column coating solution. With a dilute solution of sodium tetraborate as the eluent the model analyte anions were completely separated in the following elution order: F, HPO42-, SO42-, Cl-, NO2-, Br-, NO3-. The very early elution of phosphate and sulfate is most unusual and is unique to this system. Detection limits better than 1.1 x 10(-4) mM and linear calibration plots up to 7.0 mM were obtained with a suppressed conductivity system.  相似文献   

18.
The inability to separate fluoride, phosphate and sulfate by electrostatic ion chromatography (EIC) was overcome by using an ODS silica column coated with mixed zwitterionic-cationic surfactants as the stationary phase. The best results were obtained using the zwitterionic surfactant, 3-(N,N-dimethylmyristylammonium)-propanesulfonate (C19H41NO3S), and the cationic surfactant, myristyltrimethylammonium, CH3(CH2)13N+(CH3)3, in a 10:1 molar ratio in the column coating solution. With a dilute solution of sodium tetraborate as the eluent the model analyte anions were completely separated in the following elution order: F, HPO4 2–, SO4 2–, Cl, NO2 , Br, NO3 . The very early elution of phosphate and sulfate is most unusual and is unique to this system. Detection limits better than 1.1 × 10–4 mM and linear calibration plots up to 7.0 mM were obtained with a suppressed conductivity system.  相似文献   

19.
Summary Pure silica gels (Pia Seed 5S-60-SIL) calcined at 200, 400, 600, 800 and 1000°C for 5 h have been used as cation-exchange stationary phases in ion chromatography with indirect photometric detection for common monovalent and divalent cations (Li+, Na+, NH4 +, K+, Mg2+ and Ca2+); 0.75mm tyramine (4-(2-aminoethyl)phenol)-0.25mm oxalic acid, pH 5.0, containing crown ethers (18-crown-6 (1,4,7,10,13,15-hexaoxacyclooctadecane) or 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane)) was used as mobile phase. With increasing calcination temperature, the amounts of the crown ethers adsorbed on the calcined silica gel column increased and, consequently, the effect of the crown ethers as retention modifiers for these cations increased. Excellent simultaneous separation and highly sensitive detection of these cations at 275 nm were achieved in 17 min by use of a 150 mm×4.6 mm i.d. column packed with silica gel calcined at 1000°C and use of 0.75mm tyramine-0.25mm oxalic acid, pH 5.0, containing either 0.5mm 18-crown-6 or 5.0mm 15-crown-5 as mobile phase.  相似文献   

20.
A new stationary phase for iodide ion analysis has been developed. The cationic polymerepichlorohydrin-dimethylamine(PEPI-DMA) was served as modifier in synthesizing polyelectrolyte sorbents and the macroporous polystyrene-divinylbenzene(PS-DVB) resin was used as support. The positively charged polymer(PEPI-DMA) was electrostatically bonded to a negatively charged particle(PS-DVB sulfonated). The new stationary phase was characterized by scanning electron microscopy(SEM), Fourier transform infrared(FTIR), elemental analysis, chemical adsorption and desorption measurements. The chromatographic evaluation of the new stationary phase was performed using various anions with a conductivity detector. The new stationary phase was also applied to the determination of iodide directly with a DC amperometric detector using a platinum working electrode and an Ag/Ag Cl reference electrode. The chromatographic conditions were optimized and the eluent solution contained 5 mmol/L HNO3 and 15 mmol/L Na NO3 at a flow rate of 1.0 m L/min and column temperature of 30 8C. The applied voltage of the DC amperometric detector was 0.9 V. Under the optimum conditions, the linear range of the method was 0.2–50 mg/L for iodide ion with a correlation coefficient of 0.9990. The detection limit was 0.05 mg/L(calculated at S/N = 3) and the relative standard deviations(RSD, n = 6) were all less than 1% for retention time, peak area and peak height. This method was also utilized for the determination of iodide ions in samples of povidone iodine solution and kelp samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号