首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
以乙二醇代替常规的异丙醇为分散溶剂, H2PtCl6为前驱体溶剂, 甲醛为还原剂, 采用改进浸渍还原法制备Pt/C催化剂, 用XRD, TEM和XPS对其进行表征. 改进浸渍还原法容易制备高分散度Pt/C催化剂, 催化剂Pt粒径大小可通过改变溶液pH值控制, pH值从1.6增加至11.3, 铂纳米粒子的平均粒径由3.3 nm减小到1.8 nm. pH值11.3时催化剂中Pt(0), Pt(II)和Pt(IV)的含量分别为43.3%, 30.8%和25.9%. 选择不同Pt粒径大小的Pt/C催化剂与聚四氟乙烯(PTFE)一起负载于泡沫镍(FN), 得到Pt/C/FN疏水催化剂, 考查其对氢水液相交换反应的催化活性, Pt粒径越小, 催化剂活性越高.  相似文献   

2.
To enhance catalytic activity and durability for methanol oxidation reaction (MOR), we have fabricated bimetallic Pt–Fe catalysts on carbon fiber papers (denoted as Pt–Fe@CFP) by a facile chemical reduction method using iron as the precursor, ascorbic acid and sodium hypophosphite as the reductants, respectively. When ascorbic acid is using as the reductant, the Pt–Fe@CFP catalysts are composed of platinum and disordered Pt–Fe phases. The atomic ratio between Pt and Fe can be adjusted by altering deposition conditions. The Pt–Fe@CFP catalysts with Pt/Fe ratio of 1.1, which deposited with surfactant CTAB in bath at room temperature, exhibit excellent catalytic activity and stability in MOR. However, when sodium hypophosphite is employed as the reductant, the co-deposition of phosphorus would lead to a decreased catalytic performance in MOR.  相似文献   

3.
4.
Superior catalytic performance for selective 1,3-butadiene (1,3-BD) hydrogenation can usually be achieved with supported bimetallic catalysts. In this work, Pt−Co nanoparticles and Pt nanoparticles supported on metal–organic framework MIL-100(Fe) catalysts (MIL=Materials of Institut Lavoisier, PtCo/MIL-100(Fe) and Pt/MIL-100(Fe)) were synthesized via a simple impregnation reduction method, and their catalytic performance was investigated for the hydrogenation of 1,3-BD. Pt1Co1/MIL-100(Fe) presented better catalytic performance than Pt/MIL-100(Fe), with significantly enhanced total butene selectivity. Moreover, the secondary hydrogenation of butenes was effectively inhibited after doping with Co. The Pt1Co1/MIL-100(Fe) catalyst displayed good stability in the 1,3-BD hydrogenation reaction. No significant catalyst deactivation was observed during 9 h of hydrogenation, but its catalytic activity gradually reduces for the next 17 h. Carbon deposition on Pt1Co1/MIL-100(Fe) is the reason for its deactivation in 1,3-BD hydrogenation reaction. The spent Pt1Co1/MIL-100(Fe) catalyst could be regenerated at 200 °C, and regenerated catalysts displayed the similar 1,3-BD conversion and butene selectivity with fresh catalysts. Moreover, the rate-determining step of this reaction was hydrogen dissociation. The outstanding activity and total butene selectivity of the Pt1Co1/MIL-100(Fe) catalyst illustrate that Pt−Co bimetallic catalysts are an ideal alternative for replacing mono-noble-metal-based catalysts in selective 1,3-BD hydrogenation reactions.  相似文献   

5.
有机小分子直接燃料电池具有高能量密度和转换效率、易贮存及运输方便等优点.在过去几十年,有机小分子化合物尤其是乙醇的电催化氧化引起了研究者的关注,高活性和稳定性及低价格的电催化剂的设计和制备一直是乙醇燃料电池的研究热点.本文采用复合电沉积方法制备了Ni和CeO2复合镀层,然后利用Ni置换铂前驱体中Pt的方法制备了纳米CeO2修饰的Pt/Ni电催化剂(Pt/Ni-CeO2).采用X射线衍射(XRD)、扫描电子显微镜(SEM)及能谱仪(EDS)等手段表征了所制样品的组成和相结构、表面形貌及组成成份.XRD结果表明,所制Pt/Ni催化剂主要是PtNi合金相结构.与Pt/Ni相比,Pt/Ni-CeO2催化剂的XRD峰强明显变弱,表明纳米CeO2修饰的Pt/Ni电催化剂的结晶性较差或者其晶体颗粒较小.这可能是由于CeO2的共沉积阻止了Ni纳米颗粒的进一步生长或团聚.当电镀液中CeO2含量为50和100 mg/L时,所制Pt/Ni-CeO2催化剂样品Pt/NiCe1和Pt/NiCe2的XRD谱上未观察到CeO2相关的衍射峰,这主要可归因于催化剂中沉积的CeO2量少或其高度分散.随着电镀液中CeO2浓度进一步增大到200 mg/L时,在Pt/Ni-CeO2催化剂(Pt/NiCe4)的XRD谱上出现了CeO2相关的衍射峰.这表明采用复合电沉积-化学还原法可以成功制备CeO2修饰的Pt/Ni电催化剂.SEM结果显示,所制催化剂都是由团聚状态的纳米颗粒组成,并且Pt/NiCe2表现出比Pt/Ni更开放的微结构,从而有利于反应物扩散至催化剂内部.该结果进一步表明共沉积的CeO2对所制Pt/Ni催化剂微结构的影响.此外,EDS结果也证实成功制备了CeO2修饰的Pt/Ni电催化剂.采用多次循环伏安、电流时间曲线和电化学阻抗谱(EIS)等手段研究了所制电催化剂的电化学性能.与Pt/Ni相比,Pt/Ni-CeO2催化剂表现出更好的电催化氧化乙醇活性和稳定性,这可能与CeO2的贮氧特性及其共沉积增大了电极的粗糙度有关.红外光谱测试结果表明,在CeO2修饰的Pt/Ni电催化剂催化氧化乙醇过程中,CH3COO?可能是乙醇氧化的主要产物.在所制催化剂中,CeO2含量影响其电催化氧化乙醇性能.循环伏安和电流时间曲线测试结果表明,随着催化剂中CeO2含量增大,催化剂活性先增加后减弱.电化学阻抗谱结果表明,随着CeO2含量增大,CeO2修饰的Pt/Ni电催化剂的接触电阻先增大后变小再变大;而电荷转移电阻不断变小.在电解液中含有100 mg/L CeO2时所制电催化剂(Pt/NiCe2)具有最佳的电催化氧化乙醇活性和稳定性.这主要与CeO2的贮氧功能、Pt与CeO2/Ni间的相互作用和其较小的接触电阻和电荷转移电阻有关.该结果可为设计和制备低价格、高活性乙醇燃料电池中的催化剂提供思路.  相似文献   

6.
In recent years, various non‐precious metal electrocatalysts for the oxygen reduction reaction (ORR) have been extensively investigated. The development of an efficient and simple method to synthesize non‐precious metal catalysts with ORR activity superior to that of Pt is extremely significant for large‐scale applications of fuel cells. Here, we develop a facile, low‐cost, and large‐scale synthesis method for uniform nitrogen‐doped (N‐doped) bamboo‐like CNTs (NBCNT) with Co nanoparticles encapsulated at the tips by annealing a mixture of cobalt acetate and melamine. The uniform NBCNT shows better ORR catalytic activity and higher stability in alkaline solutions as compared with commercial Pt/C and comparable catalytic activity to Pt/C in acidic media. NBCNTs exhibit outstanding ORR catalytic activity due to high defect density, uniform bamboo‐like structure, and the synergistic effect between the Co nanoparticles and protective graphitic layers. This facile method to synthesize catalysts, which is amenable to the large‐scale commercialization of fuel cells, will open a new avenue for the development of low‐cost and high‐performance ORR catalysts to replace Pt‐based catalysts for applications in energy conversion.  相似文献   

7.
The current research of platinum (Pt)–based catalysts focuses on reducing Pt loading in the catalysts while enhancing the catalytic activity. As a rare-earth element, lanthanum (La) has demonstrated good synergistic effect with Pt-based catalysts, because of its catalytic promoting capability and high dispersibility. Here, we fabricated La-doped nano-Pt-based catalytic membrane electrode using ion beam sputtering method. The effect of La on the morphology and electrochemical performance of the catalytic membrane electrode was investigated by scanning electron microscope, X-ray photoelectron spectroscopy, and electrochemical measurements. Compared with pure Pt-based sample, the electrochemical activity specific area of the La-doped sample increases by 74.59%, with 63.95% increase in exchange current density. The results also show that La2O3 enhances oxygen enrichment of the membrane electrode and reduces interfacial energy among Pt grains while pinning the grain boundaries. In addition, the inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurement shows that the Pt loading in the membrane electrodes is below 0.1 mg/cm2. Thus, enhanced catalytic performance is achieved in catalysts with lower Pt loading.  相似文献   

8.
以介孔树脂材料FDU-14和介孔碳材料CMK-3为载体制备了两种负载型铂催化剂, 用N2气吸附、X射线衍射及CO化学吸附等手段对这两种催化剂进行了表征, 并将这两种不同的负载型铂催化剂在丙酮酸乙酯不对称氢化反应中的催化性能及其铂流失率与商品化Pt/Al2O3催化剂进行了比较. 研究结果表明, 尽管Pt/Al2O3催化剂的初始活性和光学选择性均较高, 然而相同反应条件下乙酸溶剂中Pt/FDU-14和Pt/CMK-3催化剂的铂流失率比Pt/Al2O3催化剂的低. 通过对催化剂进行CO吸附原位傅里叶变换红外漫反射光谱(DRIFTS)表征, 从载体的不同表面电子性质角度解释了不同载体负载的铂催化剂在丙酮酸乙酯不对称氢化反应中的活性和铂流失率的差异.  相似文献   

9.
The catalytic performance of Pt-based catalysts for the total oxidation of hydrocarbons was investigated.The activity of supported Pt catalysts(Pt/Al2O3,Pt/ZrO2,Pt/TiO2,and Pt/H-ZSM-5)depends on the metal oxide support.Pt/Al2O3 showed the highest catalytic activity when the catalysts were aged at 750°C for 50 h in air.The activity of Pt/Al2O3 was dependent on the valence state of the Pt surface.Pt/Al2O3 with the Pt surface in the metallic state was more active than with the surface in the cationic state.The surface density of acid and basic sites on the Al2O3 support controlled the valence state of the Pt surface and stability of the Pt particles in the highly dispersed state,respectively.  相似文献   

10.
研究了Pt/MeM(Me=H,Cu,Ce)系列催化剂对CO的催化氧化活性,用热导-气相色谱同步跟踪CO在MeM和Pt/MeM上的TPD,发现CO_2脱附量大小及峰温次序与对CO的催化氧化活性一致。CO吸附达稳态后的TPSR(CO_2)研究表明CO_2的脱附峰温较TPD低,且其脱附量大小、峰温次序亦与对CO的催化氧化活性次序一致。  相似文献   

11.
Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregna-tion methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalyticperformance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.  相似文献   

12.
采用沉淀法制备了ZrO2,CeO2和Ce0.7Zr0.3O2载体,并用浸渍法制备负载型Pt催化剂。考察了500和900℃焙烧催化剂的丙烷完全氧化性能和水汽对丙烷氧化反应的影响。对于500℃焙烧的催化剂,催化剂的丙烷氧化活性顺序为:Pt/ZrO2-500>Pt/CeO2-500>Pt/Ce0.7Zr0.3O2-500;而经900℃焙烧的催化剂活性顺序为:Pt/ZrO2-900>Pt/Ce0.7Zr0.3O2-900>Pt/CeO2-900。反应气氛中水汽的存在对两种Pt/ZrO2催化剂的活性均有抑制作用(T50温度均提高了10~15℃);而对于Pt/CeO2-500催化剂有抑制作用(T50温度提高10℃),但对Pt/CeO2-900催化剂活性有促进作用(T50温度下降25℃);对于两种Pt/Ce0.7Zr0.3O2催化剂活性具有促进作用(T50温度均下降5~25℃)。表征结果表明催化剂的活性与其表面Pt物种价态密切相关,催化剂表面上Pt0物种有利于活性的提高。Pt/Ce0.7Zr0.3O2-500催化剂中只含有氧化态Pt物种(Pt^2+),而Pt/Ce0.7Zr0.3O2-900催化剂中则含有部分金属态Pt物种,因此其活性高于Pt/Ce0.7Zr0.3O2-500催化剂。  相似文献   

13.
以NaBH4为还原剂,将K2PtCl6和AgNO3前体进行共还原制备了一系列具有不同组成的碳载PtmAg/C合金催化剂(m为Pt/Ag原子比,m为0.05~1.0),在酸性介质中考察了该系列催化剂对甲醇氧化反应的电催化性能。 与单组分Pt/C催化剂相比,系列PtmAg/C催化剂呈现出较高的催化氧化甲醇的活性与抗CO毒化能力,而且该催化剂的性能与其组成密切相关。 随m值增加,PtmAg/C催化剂对甲醇氧化反应的质量比催化活性(MSA)、本征催化活性(IA)与稳定性均逐步增加,当m=0.5时催化活性达到最高,其MSA和IA分别是Pt/C催化剂的5.1和4.8倍。  相似文献   

14.
Zhou  Peng  Zhang  Hongna  Ji  Hongwei  Ma  Wanhong  Chen  Chuncheng  Zhao  Jincai 《中国科学:化学(英文版)》2020,63(3):354-360
Identifying the active catalytic centers on catalyst surface is significant for exploring the catalytic reaction mechanism and further guiding the synthesis of high-performance catalysts.However,it remains a challange in developing the site-specific technology for the identification of the active catalytic centers.Herein,in-situ infrared spectroscopy of adsorbed CO,photocatalytic hydrogen evolution reaction(HER) test and theoretical simulation were used to distinguish and quantify the different surface sites and their H2-production catalytic activity on TiO_2-supported Pt nanoparticles(Pt NPs).Two different types of surface Pt sites,tip Pt(Pt_(tip)) and edge/terrace Pt_(edge/terrace),on TiO_2-supported Pt nanoparticles(Pt NPs) were identified.The photocatalytic H2-production activity of TiO_2-supported Pt NPs shows a linear functional relationship with the number of Pt_(tip) sites.However,the number of Pt_(edge/terracesites) produced little effect on the activity of TiO_2-supported Pt NPs.First-principle simulations confirmed that H2-evolution at the Pttipsites owns a lower energy barrier than that at Pt_(edge/terrace).This findings would be helpful for the fabrication of high-performance Pt catalysts.  相似文献   

15.
A new facile approach towards developing superior Pt-based catalysts for HCOOH electrooxidation has been proposed, which is exemplified with a mimetic underpotential deposition (MUPD) of Sb on Pt surfaces to attain a favorable coverage. Suitable Sb modification was achieved simply through immersing a bulk Pt electrode or dispersing Pt/C powders in a Sb(III) solution mixed with ascorbic acid (AA). AA serves as the mild reducing agent to ensure freshly reduced Pt surfaces for Sb modification, as demonstrated by the negatively shifted open circuit potential. The catalytic activity towards HCOOH electrooxidation on the above Sb-modified Pt/C catalyst far exceeds that on commercial Pt–Ru/C or Sb-modified Pt/C through traditional irreversible adsorption. This electroless approach is generally applicable to all types of Pt surfaces, in particular suited for upgrading Pt/C for practical anode catalysts of direct formic acid fuel cells.  相似文献   

16.
Nanostructured Pt–M (M=Fe, Co, Ni, and Cu) alloy catalysts synthesized by a low temperature (70 °C) reduction procedure with sodium formate in aqueous medium have been investigated for oxygen reduction in sulfuric acid and as cathodes in single proton exchange membrane fuel cells (PEMFC). The Pt–M alloy catalysts show improved catalytic activity towards oxygen reduction compared to pure platinum. Among the various alloy catalysts investigated, the Pt–Co catalyst shows the best performance with the maximum catalytic activity and minimum polarization occurring at a Pt:Co atomic ratio of around 1:7. While mild heat treatments at moderate temperatures (200 °C) improve the catalytic activity due to a cleaning of the surface oxides, annealing at elevated temperatures (900 °C) degrade the activity due to an increase in particle size.  相似文献   

17.
Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregnation methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalytic performance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.  相似文献   

18.
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.  相似文献   

19.
李晓芸  马丁  包信和 《催化学报》2008,29(3):259-263
在不同方法处理的活性炭上采用传统浸渍方法制备了负载Pt催化剂,并考察了其在甲基环己烷脱氢反应中的催化性能.对炭载体的氮吸附和程序升温脱附的表征结果表明,活性炭经过硝酸氧化处理和氢气高温处理后,活性炭的孔结构基本不变,但表面含氧官能团的数量和种类发生了变化.这些不同的表面基团直接影响了Pt粒子在载体上的分散度,进而使催化剂在反应中表现出不同的活性.  相似文献   

20.
林瑞  孙公权  辛勤 《催化学报》2006,27(2):109-114
 采用浸渍法制备了Pt/Ce0.75Zr0.25O2催化剂,考察了催化剂对乙醇及CO的氧化活性,并采用 18O 同位素交换、乙醇程序升温表面反应(C2H5OH-TPSR)、一氧化碳程序升温脱附(CO-TPD)和程序升温还原(H2-TPR)等技术对催化剂进行了表征. 结果表明, Pt/Ce0.75Zr0.25O2催化剂表现出较高的乙醇和CO氧化活性,其催化活性随着Pt负载量的增加而提高. 当Pt负载量为3%时,活性最高. 继续增加Pt负载量,催化剂活性下降. C2H5OH-TPSR和CO-TPD结果表明,催化剂对乙醇或CO的氧化活性与从催化剂表面脱附出来的CO2量有对应关系, CO2脱附量越大,催化剂活性越高. 18O 同位素交换结果表明,表面氧交换能力与其氧化活性有一定对应关系,催化剂的表面氧交换能力越高,氧化活性越高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号