首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For any fixed 0 < π ? 2π, let D(π) be the family of all holomorphic functions in the unit disk Δ which satisfy (i)f(0) = 0 and (ii) lim infz → π¦f(z)¦ ? 1, for all π lying on some arc Af ? with arclength ¦Af¦ ? π. We show that for each 0 < ε < 1, there is a π0 > 0 such that for any f?D(π) with π < π0, the Bloch and Doob norm respectively satisfy
6f6B= supz?Δ |f′(z)| (1?|z|2) > 2(1 ? ε) log1+cos(p21?cos(p2?1
6f6D= supz?Δ |f′(z)| (1?|z|) > (1 ? ε) log11?cos(p2?1
These two estimates do not hold with ε = 0.  相似文献   

2.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

3.
Nonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C compact riemannian manifold of dimension n ? 2 whose boundary B is an (n ? 1)-dimensional submanifold and let M = M?B be the interior of M. Study of Neumann problems of the form: Δφ +?(φ, x) = 0 in M, (dn) + g(φ, y) = 0 on B, where, for every (t, x, y) ? R × M × B, ¦?(t, x)¦ and ¦g(t, y)¦ are bounded by C(1 + ¦t¦a) or C exp(¦t¦a). Application to the determination of a conformal metric for which the scalar curvature of M and the mean curvature of B take prescribed values.  相似文献   

4.
We consider the mixed boundary value problem Au = f in Ω, B0u = g0in Γ?, B1u = g1in Γ+, where Ω is a bounded open subset of Rn whose boundary Γ is divided into disjoint open subsets Γ+ and Γ? by an (n ? 2)-dimensional manifold ω in Γ. We assume A is a properly elliptic second order partial differential operator on Ω and Bj, for j = 0, 1, is a normal jth order boundary operator satisfying the complementing condition with respect to A on Γ+. The coefficients of the operators and Γ+, Γ? and ω are all assumed arbitrarily smooth. As announced in [Bull. Amer. Math. Soc.83 (1977), 391–393] we obtain necessary and sufficient conditions in terms of the coefficients of the operators for the mixed boundary value problem to be well posed in Sobolev spaces. In fact, we construct an open subset T of the reals such that, if Ds = {u ? Hs(Ω): Au = 0} then for s ? = 12(mod 1), (B0,B1): Ds → Hs ? 12?) × Hs ? 32+) is a Fredholm operator if and only if s ∈T . Moreover, T = ?xewTx, where the sets Tx are determined algebraically by the coefficients of the operators at x. If n = 2, Tx is the set of all reals not congruent (modulo 1) to some exceptional value; if n = 3, Tx is either an open interval of length 1 or is empty; and finally, if n ? 4, Tx is an open interval of length 1.  相似文献   

5.
The matrix equation SA+A1S=S1B1BS is studied, under the assumption that (A, B1) is controllable, but allowing nonhermitian S. An inequality is given relating the dimensions of the eigenspaces of A and of the null space of S. In particular, if B has rank 1 and S is nonsingular, then S is hermitian, and the inertias of A and S are equal. Other inertial results are obtained, the role of the controllability of (A1, B1S1) is studied, and a class of D-stable matrices is determined.  相似文献   

6.
We study degeneration for ? → + 0 of the two-point boundary value problems
τ?±u := ?((au′)′ + bu′ + cu) ± xu′ ? κu = h, u(±1) = A ± B
, and convergence of the operators T?+ and T?? on L2(?1, 1) connected with them, T?±u := τ?±u for all
u?D(T?±, D(T?±) := {u ? L2(?1, 1) ∣ u″ ? L2(?1, 1) &; u(?1) = u(1) = O}, T0+u: = xu′
for all
u?D(TO+), D(TO+) := {u ? L2(?1, 1) ∣ xu′ ? L2(?1, 1) &; u(?1) = u(1) = O}
. Here ? is a small positive parameter, λ a complex “spectral” parameter; a, b and c are real b-functions, a(x) ? γ > 0 for all x? [?1, 1] and h is a sufficiently smooth complex function. We prove that the limits of the eigenvalues of T?+ and of T?? are the negative and nonpositive integers respectively by comparison of the general case to the special case in which a  1 and bc  0 and in which we can compute the limits exactly. We show that (T?+ ? λ)?1 converges for ? → +0 strongly to (T0+ ? λ)?1 if R e λ > ? 12. In an analogous way, we define the operator T?+, n (n ? N in the Sobolev space H0?n(? 1, 1) as a restriction of τ?+ and prove strong convergence of (T+?,n ? λ)?1 for ? → +0 in this space of distributions if R e λ > ?n ? 12. With aid of the maximum principle we infer from this that, if h?C1, the solution of τ?+u ? λu = h, u(±1) = A ± B converges for ? → +0 uniformly on [?1, ? ?] ∪ [?, 1] to the solution of xu′ ? λu = h, u(±1) = A ± B for each p > 0 and for each λ ? C if ? ?N.Finally we prove by duality that the solution of τ??u ? λu = h converges to a definite solution of the reduced equation uniformly on each compact subset of (?1, 0) ∪ (0, 1) if h is sufficiently smooth and if 1 ? ?N.  相似文献   

7.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

8.
Let A be an n×n complex matrix. For a suitable subspace M of Cn the Schur compression A M and the (generalized) Schur complement A/M are defined. If A is written in the form
A= BCST
according to the decomposition Cn=MM and if B is invertible, then
AM=BCSSB?1C
and
A/M=000T?SB?1C·
The commutativity rule for Schur complements is proved:
(A/M)/N=(A)/N)/M·
This unifies Crabtree and Haynsworth's quotient formula for (classical) Schur complements and Anderson's commutativity rule for shorted operators. Further, the absorption rule for Schur compressions is proved:
(A/M)N=(AN)M=AM whenever M?N
.  相似文献   

9.
The compactness method to weighted spaces is extended to prove the following theorem:Let H2,s1(B1) be the weighted Sobolev space on the unit ball in Rn with norm
6ν612,s=B1 (1rs)|ν|2 dx + ∫B1 (1rs)|Dν|2 dx.
Let n ? 2 ? s < n. Let u? [H2,s1(B1) ∩ L(B1)]N be a solution of the nonlinear elliptic system
B11rs, i,j=1n, h,K=1N AhKij(x,u) DiuhDK dx=0
, ψ ? ¦C01(B1N, where ¦Aijhk¦ ? L, Aijhk are uniformly continuous functions of their arguments and satisfy:
|η|2 = i=1n, j=1Nij|2 ? i,j=1n, 1rs, h,K=1N AhKijηihηik,?η?RNn
. Then there exists an R1, 0 < R1 < 1, and an α, 0 < α < 1, along with a set Ω ? B1 such that (1) Hn ? 2(Ω) = 0, (2) Ω does not contain the origin; Ω does not contain BR1, (3) B1 ? Ω is open, (4) u is Lipα(B1 ? Ω); u is LipαBR1.  相似文献   

10.
Let L1, L2,…, Lt be a given set of t mutually orthogonal order-n latin squares defined on a symbol set S, |S| = n. The squares are equivalent to a (t + 2)-netN of order n which has n2 points corresponding to the n2 cells of the squares. A line of the net N defined by the latin square Li comprises the n points of the net which are specified by a set of n cells of Li all of which contain the same symbol x of S. If we pick out a particular r × r block B of cells, a line which contains points corresponding to r of the cells of B will be called an r-cell line. If there exist r(r ? 1) such lines among the tn lines of N, we shall say that they form a pseudo-subplane of order r-the “pseudo” means that these lines need not belong to only r ? 1 of the latin squares. The purpose of the present note is to prove that the hypothesis that such a pseudo-plane exists in N implies that r3 ? (t + 2)r2 + r + nt ?10.  相似文献   

11.
Let ψ be convex with respect to ?, B a convex body in Rn and f a positive concave function on B. A well-known result by Berwald states that 1¦B¦B ψ(f(x)) dx ? n ∝01 ψ(ξt)(1 ? t)n ? 1) dt (1) if ξ is chosen such that 1¦B¦B ?(f(x)) dx = n ∝01 ?(ξt)(1 ? t)n ? 1) dt.The main purpose in this paper is to characterize those functions f : BR+ such that (1) holds.  相似文献   

12.
The usual Sobolev inequality in Rn, n ? 3, asserts that ∥▽?∥22 ? Sn ∥?∥212, with Sn being the sharp constant. This paper is concerned, instead, with functions restricted to bounded domains Ω ? Rn. Two kinds of inequalities are established: (i) If ? = 0 on ?Ω, then ∥▽?∥22 ? Sn ∥?||212 + C(Ω) ∥?∥p,w2 with p = 212 and ∥▽?∥22 ? Sn ∥?∥212 + D(Ω) ∥▽?∥q,w2 with q = n(n ? 1). (ii) If ? ≠ 0 on ?Ω, then ∥▽?∥2 + C(Ω) ∥?∥q,?Ω ? Sn12 ∥?∥21 with q = 2(n ? 1)(n ? 2). Some further results and open problems in this area are also presented.  相似文献   

13.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

14.
Let D(?) be the Doob's class containing all functions f(z) analytic in the unit disk Δ such that f(0) = 0 and lim inf¦f(z) ¦ ? 1 on an arc A of ?Δ with length ¦A ¦? ?. It is first proved that if f?D(?) then the spherical norm ∥ f ∥ = supz?Δ(1 ? ¦z¦2)¦f′(z)¦(1 + ¦f(z)¦2) ? C1sin(π ? (?2))/ (π ? (g92)), where C1 = limn→∞∥ znand12 < C1 < 2e. Next, U represents the Seidel's class containing all non-constant functions f(z) bounded analytic in Δ such that ¦tf(ei0)¦ = 1 almost everywhere. It is proved that inff?Uf∥ = 0, and if f has either no singularities or only isolated singularities on ?Δ, then ∥f∥ ? C1. Finally, it is proved that if f is a function normal in Δ, namely, the norm ∥f∥< ∞, then we have the sharp estimate ∥fp∥ ? pf∥, for any positive integer p.  相似文献   

15.
If we change the sign of p ? m columns (or rows) of an m × m positive definite symmetric matrix A, the resultant matrix B has p negative eigenvalues. We give systems of inequalities for the eigenvalues of B and of the matrix obtained from B by deleting one row and column. To obtain these, we first develop characterizations of the eigenvalues of B which are analogous to the minimum-maximum properties of the eigenvalues of a symmetric A, i.e. the Courant-Fischer theorem. These results arose from studying probability distributions on the hyperboloid of revolution
x21 + ? + x2m?p ? x2m ? p + 1 ? ? ? x2m = 1
. By contrast, the familiar results are associated with the sphere x21 + ? + x2m = 1.  相似文献   

16.
Let Ms, be the number of solutions of the equation
X13 + X23+ … + Xs3=0
in the finite field GF(p). For a prime p ≡ 1(mod 3),
s=1 MsXs = x1 ? px+ x2(p ? 1)(2 + dx)1 ? 3px2 ? pdx3
,
M3 = p2 + d(p ? 1)
, and
M4 = p2 + 6(p2 ? p)
. Here d is uniquely determined by
4p = d2 + 27b2and d ≡ 1(mod 3)
.  相似文献   

17.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

18.
A construction is given for difference sets in certain non-cyclic groups with the parameters v = qs+1{[(qs+1 ? 1)(q ? 1)] + 1}, k = qs(qs+1 ? 1)(q ? 1), λ = qs(qs ? 1)(q ? 1), n = q2s for every prime power q and every positive integer s. If qs is odd, the construction yields at least 12(qs + 1) inequivalent difference sets in the same group. For q = 5, s = 2 a difference set is obtained with the parameters (v, k, λ, n) = (4000, 775, 150, 625), which has minus one as a multiplier.  相似文献   

19.
Let B be the open unit ball of Cn, n > 1. Let I (for “inner”) be the set of all u ? H °(B) that have ¦u¦ = 1 a.e. on the boundary S of B. Aleksandrov proved recently that there exist nonconstant u ? I. This paper strengthens his basic theorem and provides further information about I and the algebra Q generated by I. Let XY be the finite linear span of products xy, x ? X, y ? Y, and let ¦X¦ be the norm closure, in L = L(S), of X. Some results: set I is dense in the unit ball of H(B) in the compact-open topology. On S, Q?Q is weak1-dense in L, ¦Q? does not contain H, C(S) ?¦Q?H¦ ≠ ¦H?H¦ ≠ L. (When n = 1, ¦Q¦ = Hand ¦Q?Q¦ = L.) Every unimodular ? ? L is a pointwise limit a.e. of products uv?, u ? I, ν ? I. The zeros of every ? ? 0 in the ball algebra (but not of every H-function) can be matched by those of some u ? I, as can any finite number of derivatives at 0 if ∥?∥ < 1. However, ?u cannot be bounded in B if u ? I is non-constant.  相似文献   

20.
Suppose that f(z) = z + a2z2 + ··· + anzn + ··· is regular in the unit disc D with [f(z) f′(z)z] ≠ 0 in D, and further let α ? 0 and k ? 2. If o ¦ Re{(1 ? α)z[f′(z)f(z)] + α(1 + z[f″(z)f′(z)])}¦ dθ ? kπ for z ? D, then f(z) is said to belong to the class MV[α, k]. This class contains many of the special classes of regular and univalent functions. The authors determine the Hardy classes of which f(z), f′(z) and f″(z) belong and obtain growth estimates of an.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号