首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let R be a commutative ring with a nonzero identity element. For a natural number n, we associate a simple graph, denoted by \(\Gamma ^n_R\), with \(R^n\backslash \{0\}\) as the vertex set and two distinct vertices X and Y in \(R^n\) being adjacent if and only if there exists an \(n\times n\) lower triangular matrix A over R whose entries on the main diagonal are nonzero and one of the entries on the main diagonal is regular such that \(X^TAY=0\) or \(Y^TAX=0\), where, for a matrix \(B, B^T\) is the matrix transpose of B. If \(n=1\), then \(\Gamma ^n_R\) is isomorphic to the zero divisor graph \(\Gamma (R)\), and so \(\Gamma ^n_R\) is a generalization of \(\Gamma (R)\) which is called a generalized zero divisor graph of R. In this paper, we study some basic properties of \(\Gamma ^n_ R\). We also determine all isomorphic classes of finite commutative rings whose generalized zero divisor graphs have genus at most three.  相似文献   

2.
Given a word \(w=w_1w_2\cdots w_n\) of length n over an ordered alphabet \(\Sigma _k\), we construct a graph \(G(w)=(V(w), E(w))\) such that V(w) has n vertices labeled \(1, 2,\ldots , n\) and for \(i, j \in V(w)\), \((i, j) \in E(w)\) if and only if \(w_iw_j\) is a scattered subword of w of the form \(a_{t}a_{t+1}\), \(a_t \in \Sigma _k\), for some \(1 \le t \le k-1\) with the ordering \(a_t<a_{t+1}\). A graph is said to be Parikh word representable if there exists a word w over \(\Sigma _k\) such that \(G=G(w)\). In this paper we characterize all Parikh word representable graphs over the binary alphabet in terms of chordal bipartite graphs. It is well known that the graph isomorphism (GI) problem for chordal bipartite graph is GI complete. The GI problem for a subclass of (6, 2) chordal bipartite graphs has been addressed. The notion of graph powers is a well studied topic in graph theory and its applications. We also investigate a bipartite analogue of graph powers of Parikh word representable graphs. In fact we show that for G(w), \(G(w)^{[3]}\) is a complete bipartite graph, for any word w over binary alphabet.  相似文献   

3.
For two given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1,G_2)\) is the least integer r such that for every graph G on r vertices, either G contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). In this note, we determined the Ramsey number \(R(K_{1,n},W_m)\) for even m with \(n+2\le m\le 2n-2\), where \(W_m\) is the wheel on \(m+1\) vertices, i.e., the graph obtained from a cycle \(C_m\) by adding a vertex v adjacent to all vertices of the \(C_m\).  相似文献   

4.
Assign to each vertex v of the complete graph \(K_n\) on n vertices a list L(v) of colors by choosing each list independently and uniformly at random from all f(n)-subsets of a color set \([n] = \{1,\dots , n\}\), where f(n) is some integer-valued function of n. Such a list assignment L is called a random (f(n), [n])-list assignment. In this paper, we determine the asymptotic probability (as \(n \rightarrow \infty \)) of the existence of a proper coloring \(\varphi \) of \(K_n\), such that \(\varphi (v) \in L(v)\) for every vertex v of \(K_n\). We show that this property exhibits a sharp threshold at \(f(n) = \log n\). Additionally, we consider the corresponding problem for the line graph of a complete bipartite graph \(K_{m,n}\) with parts of size m and n, respectively. We show that if \(m = o(\sqrt{n})\), \(f(n) \ge 2 \log n\), and L is a random (f(n), [n])-list assignment for the line graph of \(K_{m,n}\), then with probability tending to 1, as \(n \rightarrow \infty \), there is a proper coloring of the line graph of \(K_{m,n}\) with colors from the lists.  相似文献   

5.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

6.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

7.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least \(i+1\). Let \(S^n\) be the base-3 Sierpiński graph of dimension n. It is proved that \(\chi _{\rho }(S^1) = 3\), \(\chi _{\rho }(S^2) = 5\), \(\chi _{\rho }(S^3) = \chi _{\rho }(S^4) = 7\), and that \(8\le \chi _\rho (S^n) \le 9\) holds for any \(n\ge 5\).  相似文献   

8.
An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.  相似文献   

9.
Let \(G=(V,E)\) be a graph. A subset \(S\subseteq V\) is a k-dominating set of G if each vertex in \(V-S\) is adjacent to at least k vertices in S. The k-domination number of G is the cardinality of the smallest k-dominating set of G. In this paper, we shall prove that the 2-domination number of generalized Petersen graphs \(P(5k+1, 2)\) and \(P(5k+2, 2)\), for \(k>0\), is \(4k+2\) and \(4k+3\), respectively. This proves two conjectures due to Cheng (Ph.D. thesis, National Chiao Tung University, 2013). Moreover, we determine the exact 2-domination number of generalized Petersen graphs P(2kk) and \(P(5k+4,3)\). Furthermore, we give a good lower and upper bounds on the 2-domination number of generalized Petersen graphs \(P(5k+1, 3), P(5k+2,3)\) and \(P(5k+3, 3).\)  相似文献   

10.
The intersection L of two different non-opposite hemispheres G and H of the d-dimensional unit sphere \(S^d\) is called a lune. By the thickness of L we mean the distance of the centers of the \((d-1)\)-dimensional hemispheres bounding L. For a hemisphere G supporting a convex body \(C \subset S^d\) we define \(\mathrm{width}_G(C)\) as the thickness of the narrowest lune or lunes of the form \(G \cap H\) containing C. If \(\mathrm{width}_G(C) =w\) for every hemisphere G supporting C, we say that C is a body of constant width w. We present properties of these bodies. In particular, we prove that the diameter of any spherical body C of constant width w on \(S^d\) is w, and that if \(w < \frac{\pi }{2}\), then C is strictly convex. Moreover, we check when spherical bodies of constant width and constant diameter coincide.  相似文献   

11.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

12.
Let p be an odd prime number and \(\ell \) an odd prime number dividing \(p-1\). We denote by \(F=F_{p,\ell }\) the real abelian field of conductor p and degree \(\ell \), and by \(h_F\) the class number of F. For a prime number \(r \ne p,\,\ell \), let \(F_{\infty }\) be the cyclotomic \(\mathbb {Z}_r\)-extension over F, and \(M_{\infty }/F_{\infty }\) the maximal pro-r abelian extension unramified outside r. We prove that \(M_{\infty }\) coincides with \(F_{\infty }\) and consequently \(h_F\) is not divisible by r when r is a primitive root modulo \(\ell \) and r is smaller than an explicit constant depending on p.  相似文献   

13.
In this paper, we first give a classification of the family of 2-geodesic transitive abelian Cayley graphs. Let \(\Gamma \) be such a graph which is not 2-arc transitive. It is shown that one of the following holds: (1) \(\Gamma \cong \mathrm{K}_{m[b]}\) for some \(m\ge 3\) and \(b\ge 2\); (2) \(\Gamma \) is a normal Cayley graph of an elementary abelian group; (3) \(\Gamma \) is a cover of Cayley graph \(\Gamma _K\) of an abelian group T / K, where either \(\Gamma _K\) is complete arc transitive or \(\Gamma _K\) is 2-geodesic transitive of girth 3, and A / K acts primitively on \(V(\Gamma _K)\) of type Affine or Product Action. Second, we completely determine the family of 2-geodesic transitive circulants.  相似文献   

14.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

15.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

16.
Let M be an invariant subspace of \(H^2\) over the bidisk. Associated with M, we have the fringe operator \(F^M_z\) on \(M\ominus w M\). For \(A\subset H^2\), let [A] denote the smallest invariant subspace containing A. Assume that \(F^M_z\) is Fredholm. If h is a bounded analytic function on \(\mathbb {D}^2\) satisfying \(h(0,0)\not =0\), then \(F^{[h M]}_z\) is Fredholm and \(\mathrm{ind}\,F^{[h M]}_z=\mathrm{ind}\,F^M_z\).  相似文献   

17.
The partition graph of a positive integer n, \(P_n\), is the graph whose vertices are the cyclic compositions of n and two vertices are adjacent if one composition is obtained from the other one by replacing two cyclically consecutive parts by their sum. In this paper we introduce and investigate the notions of singular cyclic composition and singular edge of \(P_n\). We associate with every singular edge and every cycle of \(P_n\), whose vertices are aperiodic cyclic compositions of n, a cycle or a set of disjoint cycles of equal length of the hypercube \(Q_n\).  相似文献   

18.
Let \(\Gamma \) denote a bipartite distance-regular graph with vertex set X, diameter \(D \ge 4\), and valency \(k \ge 3\). Let \({{\mathbb {C}}}^X\) denote the vector space over \({{\mathbb {C}}}\) consisting of column vectors with entries in \({{\mathbb {C}}}\) and rows indexed by X. For \(z \in X\), let \({{\widehat{z}}}\) denote the vector in \({{\mathbb {C}}}^X\) with a 1 in the z-coordinate, and 0 in all other coordinates. Fix a vertex x of \(\Gamma \) and let \(T = T(x)\) denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible T-modules with endpoint 2, and they both are thin. Fix \(y \in X\) such that \(\partial (x,y)=2\), where \(\partial \) denotes path-length distance. For \(0 \le i,j \le D\) define \(w_{ij}=\sum {{\widehat{z}}}\), where the sum is over all \(z \in X\) such that \(\partial (x,z)=i\) and \(\partial (y,z)=j\). We define \(W=\mathrm{span}\{w_{ij} \mid 0 \le i,j \le D\}\). In this paper we consider the space \(MW=\mathrm{span}\{mw \mid m \in M, w \in W\}\), where M is the Bose–Mesner algebra of \(\Gamma \). We observe that MW is the minimal A-invariant subspace of \({{\mathbb {C}}}^X\) which contains W, where A is the adjacency matrix of \(\Gamma \). We show that \(4D-6 \le \mathrm{dim}(MW) \le 4D-2\). We display a basis for MW for each of these five cases, and we give the action of A on these bases.  相似文献   

19.
Let \(X=G/K\) be a symmetric space of noncompact type and rank \(k\ge 2\). We prove that horospheres in X are Lipschitz \((k-2)\)-connected if their centers are not contained in a proper join factor of the spherical building of X at infinity. As a consequence, the distortion dimension of an irreducible \(\mathbb {Q}\)-rank-1 lattice \(\Gamma \) in a linear, semisimple Lie group G of \(\mathbb R\)-rank k is \(k-1\). That is, given \(m< k-1\), a Lipschitz m-sphere S in (a polyhedral complex quasi-isometric to) \(\Gamma \), and a \((m+1)\)-ball B in X (or G) filling S, there is a \((m+1)\)-ball \(B'\) in \(\Gamma \) filling S such that \({{\mathrm{vol}}}B'\sim {{\mathrm{vol}}}B\). In particular, such arithmetic lattices satisfy Euclidean isoperimetric inequalities up to dimension \(k-1\).  相似文献   

20.
A graph G is called claw-o-heavy if every induced claw (\(K_{1,3}\)) of G has two end-vertices with degree sum at least |V(G)|. For a given graph SG is called S-f-heavy if for every induced subgraph H of G isomorphic to S and every pair of vertices \(u,v\in V(H)\) with \(d_H(u,v)=2,\) there holds \(\max \{d(u),d(v)\}\ge |V(G)|/2.\) In this paper, we prove that every 2-connected claw-o-heavy and \(Z_3\)-f-heavy graph is hamiltonian (with two exceptional graphs), where \(Z_3\) is the graph obtained by identifying one end-vertex of \(P_4\) (a path with 4 vertices) with one vertex of a triangle. This result gives a positive answer to a problem proposed Ning and Zhang (Discrete Math 313:1715–1725, 2013), and also implies two previous theorems of Faudree et al. and Chen et al., respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号